
NodeBrain Guide

Release 0.8.17

NodeBrain Guide
August 2014
NodeBrain Open Source Project

Release 0.8.17

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2014-02-16 Title: NodeBrain Guide
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Source Project

Release 0.8.16
• This document replaces NodeBrain User Guide first published in 2003.
• Converted to texinfo format
• Reorganized existing content and added content; e.g. Security and Perfor-

mance chapters.
• The Sample Scripts chapter has been dropped. The NodeBrain Tutorial is

now a better source of examples.

Preface

This guide is intended for readers seeking a general understanding of NodeBrain. Other
documents are available for readers looking for a more complete understanding of the rule
language, modules, C API, and kits.
See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Guide - Information on using nb
NodeBrain Tutorial - A gentle introduction to nb and the rule language
NodeBrain Language - Rule language syntax and semantics
NodeBrain Library - C API

Caboodle NodeBrain Kit - A framework for managing rules
System NodeBrain Kit - A small sample application

Document Conventions

Sample code and input/output examples are displayed in a monospace font, indented in
HTML and Info, and enclosed in a box in PDF or printed copies. Bold text is used to bring
the reader’s attention to specific portions of an example. In the following example, the first
and last line are associated with the host shell and the lines in between are input or output
unique to NodeBrain. The define command is highlighted, indicating it is the focus of the
example. Lines ending with a backslash \ indicate when a command is continued on the
next displayed line. This is supported by the language within source files, but not for other
methods of command input. If you copy an example of a command displayed over multiple
lines, you must enter it as a single line when used outside the context of a source file.� �
$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";
> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\

e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NB000I Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$
 	

Table of Contents

1 Concepts . 1
1.1 Rule Language . 1
1.2 Agents . 2
1.3 Caboodles . 2
1.4 Servants . 2
1.5 Modules . 3
1.6 Kits . 3
1.7 Plans . 3
1.8 C API . 4

2 Installing . 5
2.1 Installing from Package Repositories . 5

2.1.1 yum . 5
2.1.2 apt-get . 5

2.2 Installing from GNU Source Distribution File 5
2.2.1 Installing as root to /usr/local . 6
2.2.2 Installing to Your Home directory . 6
2.2.3 Excluding OpenSSL and Dependant Features 6
2.2.4 Excluding Node Modules (Plugins) . 6
2.2.5 Creating an RPM file . 7
2.2.6 Creating a GNU Binary Distribution file 7

2.3 Installing from GNU Binary Distribution File 7
2.3.1 Installing as root to /usr/local . 7
2.3.2 Installing to User Home Directory . 7

2.4 Installing from Git Repository . 8

3 Running . 9
3.1 Command Line . 9
3.2 Script . 9
3.3 Relocatable Caboodle . 9
3.4 Daemon . 9
3.5 System Startup . 10

4 Rule Engine . 11
4.1 Spreadsheet Analogy . 11
4.2 Expert Analogy . 11
4.3 Inputs and Outputs . 12
4.4 Check Scripts . 12
4.5 Cron Schedules . 13

NodeBrain Guide i

5 Networking . 15
5.1 Networking Node Modules . 15
5.2 Networking Servants . 15
5.3 SSH and SCP Commands . 15
5.4 SSH Tunnels . 16
5.5 IPSec Tunnels . 16

6 Security . 17
6.1 Code Scanning . 17
6.2 File Permissions . 17
6.3 Identity and Rank . 17
6.4 Module Security . 17
6.5 Root Agents . 17

7 Performance . 19
7.1 Test Platform . 19
7.2 Test Conditions . 19
7.3 Relational Term-Rich Rules Assert Test . 20
7.4 Relational Value-Rich Rules Assert Test . 21
7.5 Relational Value-Rich Rules Alert Test . 22

Index . 23

ii NodeBrain Guide

Chapter 1: Concepts August 2014

1 Concepts

NodeBrain is a rule engine and related components intended for the construction of state
and event monitoring applications. The rule engine interacts with other monitoring com-
ponents to perform simple element state monitoring or complex event correlation based on
user specified rules. The language is extended through the development of node modules—
plugins that use NodeBrain Library functions to implement a node and interact with the
rule engine. Functionality is further extended by servants—programs written in any lan-
guage that interact with NodeBrain via stdin, stdout, and stderr. A small set of plugins
are distributed with NodeBrain to provide commonly needed features such as peer-to-peer
communication, log monitoring, event caching, and a web browser interface for administra-
tors.

1.1 Rule Language

The NodeBrain rule engine is an interpreter of the NodeBrain rule language. The language
is mostly declarative rather than procedural. This means you define a set of conditions and
response actions without fussing over the order in which the conditions are evaluated or the
order in which the actions are taken.

Rule conditions are organized as a hierarchy of cells. Each cell has a value and a formula
that references other cells for computing the value. A constant cell is a special case where
the formula references only constant values.

The following example could be used to monitor the temperature of a CPU in Celsius.
This example is only intended to give you a sense of the language, so don’t worry about
understanding every detail.� �
define cpu node;
cpu. define temp cell; # Current CPU temperature
cpu. define tempMax cell 90; # Maximum normal temperature
cpu. define tempReset cell 80; # Reset temperature for "hot" episode
cpu. define tempAlert on(temp>tempMax ^ temp<tempReset):$alarm("Hot CPU");
 	
Once these rules are loaded into the engine, the state of the monitored element, CPU
temperature in this case, must be reported to the rule engine. However the temperature is
actually obtained, it is reported to NodeBrain as an assertion.� �
cpu. assert temp=75; # update the current cpu temperature
 	
This example also allows for adjusting the alarm threshold and episode reset threshold.� �
cpu. assert tempMax=95,tempReset=85; # change alarm thresholds
 	
In this example rule set, the value of tempMax determines the temperature at which an alarm
is generated and an episode begins. The value of tempReset determines the temperature at

NodeBrain Guide 1

August 2014 Chapter 1: Concepts

which the episode is considered complete. This prevents the alarm from triggering multiple
times when the temperature bounces up and down over and below the upper threshold.

Rule files can be run as scripts by starting the file with a #!/usr/bin/nb shebang and setting
the executable file permission. They can also be run by issuing an nb command with the file
name as an argument. We sometime refer to a NodeBrain rule file as a NodeBrain script,
but this is not intended to imply a procedural language like most scripting languages.

1.2 Agents

An agent is a NodeBrain script that runs as a daemon to monitor one or more elements
or event streams. This is the primary use of the rule engine, although it can also run in
the foreground as a batch job, or as an interactive program accepting commands from a
terminal.

1.3 Caboodles

A caboodle is a directory that contains files used by a NodeBrain application. The rule engine
does not dictate the structure of subdirectories in a caboodle, but you are advised to follow
the structure defined by the Caboodle NodeBrain Kit. By putting all files associated with
a NodeBrain application in a single directory and using relative file paths when referencing
one from another, your application is relocatable and you minimize interference with other
NodeBrain applications. You can easily host multiple NodeBrain applications on a single
server, and multiple instances of a NodeBrain application over multiple servers. If built
properly, a caboodle can be archived using tar, and replicated by extracting the tar file in
a different location on the same host, or in any location on another host.

The Caboodle Kit provides commands for operating on a caboodle. However, you are not
required to use the Caboodle Kit, nor are you required to conform to the caboodle model.
It is just a recommendation.

Under the caboodle model, executable NodeBrain scripts use a #!bin/nb shebang, where
bin/nb is the relative path within the caboodle of a symbolic link to the desired version
of nb; e.g. ‘/usr/bin/nb-0.8.16’. This enables the timing of upgrades to be managed
separately for each caboodle.

1.4 Servants

A servant is a program or script (written in any programming language) that runs as a
child to a NodeBrain script and communicates via stdin, stdout, and stderr. A servant may
receive input from NodeBrain on stdin, send commands to NodeBrain on stdout, and send
lines to the NodeBrain log file on stderr.

A servant may be used to dynamically generate rules, provide assertions and alerts that
update the state of rule cells to which rules respond, or implement external actions.

When using the caboodle model, a servant is stored in the ‘servant’ subdirectory and can
assume the current working directory is the caboodle root directory. References to all other
components should be imade via paths relative to the caboodle root directory.

2 NodeBrain Guide

Chapter 1: Concepts August 2014

1.5 Modules

A node module is a plugin to the rule engine that provides added capabilities using an API
provided the NodeBrain Library. Unlike servants that are loosely coupled, modules tightly
couple with the rule engine. This has both advantages and disadvantages. The obvious
disadvantages are: 1) modules require more effort to build, and 2) modules may require
a rebuild or even revision to take advantage of upgrades to the NodeBrain Library or the
OS. The advantages are: 1) modules can provide better performance in many cases, and 2)
modules can participate as cells, not just as command processors and generators.

1.6 Kits

A NodeBrain kit is a collection of components (rule files, servants, etc.) used within a
caboodle for a particular NodeBrain application. Kit developers may use the framework
provided by the Caboodle NodeBrain Kit, or may develop their own framework.
The rule engine, nb, provides a hook for implementing kit frameworks. This is provided by
the nbkit command, which is just an alias for nb. The nbkit command lets you give short
names to your caboodles. These caboodle names normally identify the application.� �
... define the bobo caboodle to nbkit
$ nbkit bobo link $HOME/bobo
 	
A kit framework can implement any set of commands for operating on a caboodle. This
only requires creating an nbkit executable and placing it in the ‘bin’ subdirectory of the
caboodle. The nbkit command provided by the rule engine can then be used to invoke
kit framework commands that can assume the caboodle root directory is the current work-
ing directory. This means frameworks can be provided entirely within caboodles without
requiring the installation of additional packages on the system.� �
... The nbkit command you issue from any current working directory
$ nbkit bobo command arguments

... The command nbkit issues with $HOME/bobo as current working directory
$ bin/nbkit_ bobo command arguments
 	
The Caboodle NodeBrain Kit provides a framework using this scheme. You can use it, or
develop your own kit framework.

1.7 Plans

A NodeBrain plan is a document that defines a set of rules in an abstract representation not
known to the rule engine. The Caboodle NodeBrain Kit uses XML documents conforming
to a specific schema to represent plans. Another framework could use a different XML
schema, or another document format not based on XML. Plan compilers are required to
translate a plan into a set of rules in the syntax of the NodeBrain rule language. This
approach to managing NodeBrain rules enables rule developers to work at a higher level of
abstraction, and provides leverage for adapting rules to take advantage of new rule engine
features without updating plans.

NodeBrain Guide 3

August 2014 Chapter 1: Concepts

1.8 C API

The NodeBrain Library provides the rule engine and C API functions that can be used to
embed the rule engine in a C program or create a plugin to the rule engine. The nodebrain
package includes the library, the nb command which is actually just a small main routine
the uses the C API to start the engine, and a collection of plugins that use the C API to
extend the engine.
The C API documentation has not been released because it is incomplete and out of date.
Until the document is released, reference the source code for nb.c and the plugin modules
for examples of calls to API functions.

4 NodeBrain Guide

Chapter 2: Installing August 2014

2 Installing

NodeBrain is packaged using the GNU Build System—autoconf, automake, and libtool.
The make file supports the creation of Linux RPM files with a simple make rpm command,
and files are included for building Debian based packages (not yet as simple at make deb).

2.1 Installing from Package Repositories

The easiest way to install NodeBrain is from a package repository when available. It is not
currently included in major Linux distributions, but may be pulled from other repositories.
If you work for a company or organization that has internal package repositories, check to
see if nodebrain is available.

2.1.1 yum

On GNU/Linux distributions that use the RPM packaging system, you may be able to
install NodeBrain using yum. The chance is slim currently that NodeBrain is in one of your
configured repositories, but when it is, this is the best option for installing.� �
yum install nodebrain
 	
If you are experimenting on a test machine and feel comfortable installing from an unofficial
repository, you can browse to the following url for instructions on how to install from the
author’s repository at software.opensuse.org.

http://software.opensuse.org/download.html?project=home:trettevik&package=nodebrain

2.1.2 apt-get

On GNU/Linux distributions that use the Debian packaging system, you may be able to
install NodeBrain using apt-get. Currently NodeBrain is not likely to be available from
your configured repositories, but this is your best option when it works.� �
apt-get install nodebrain
 	
If you are experimenting on a test machine and feel comfortable installing from an unofficial
repository, you can browse to the following url for instructions on how to install from the
author’s repository at software.opensuse.org.

http://software.opensuse.org/download.html?project=home:trettevik&package=nodebrain

2.2 Installing from GNU Source Distribution File

This method is appropriate if you have a build machine where the needed development
packages exist or can be installed.

Browse to http://nodebrain.org and select [Downloads] on the left side menu. Then click on
the Rule Engine nodebrain-version.tar.gz file link to download the GNU source distribution
file from SourceForge.net.

NodeBrain Guide 5

August 2014 Chapter 2: Installing

2.2.1 Installing as root to /usr/local

As root, issue the following command on the downloaded tar.gz file.� �
tar -xf nodebrain-version.tar.gz
cd nodebrain-version
./configure
make
make check
make install
 	
2.2.2 Installing to Your Home directory

If you don’t have root access on the box, and want to install NodeBrain in your home
directory, specify a --prefix option on the configure command.� �
$ tar -xf nodebrain-version.tar.gz
$ cd nodebrain-version
$./configure --prefix=$HOME/usr
$ make
$ make check
$ make install
$ export PATH=$PATH:$HOME/usr/local/bin
$ export NB_MODULE_PATH=$HOME/usr/local/lib/nb
 	
If you have success installing to your home directory and the nb command works, add the
two export commands to your profile so they are applied each time you login.

2.2.3 Excluding OpenSSL and Dependant Features

If you don’t need any NodeBrain features that depend on OpenSSL (e.g. Webster and
Message modules), you may exclude these feature from the build by specifying --without-
tls on the ./configure command. Use it in combination with whatever other arguments
you specify.� �
$./configure --without-tls
 	
2.2.4 Excluding Node Modules (Plugins)

To exclude any of the modules provided by the NodeBrain package, include --disable-
nb_module as an argument to ./configure. For example, to exclude the Peer module, the
command would look as follows.� �
$./configure --disable-nb_peer
 	
To get a complete list of ./configure options, use --help.

6 NodeBrain Guide

Chapter 2: Installing August 2014

� �
$./configure --help
 	
2.2.5 Creating an RPM file

To make an RPM to be installed with yum or rpm on another system, simply issue make
rpm. This will invoke an rpmbuild command.

2.2.6 Creating a GNU Binary Distribution file

If you need to install on a machine that doesn’t use the RPM or Debian packaging systems,
and you are not able to use the native packaging system, you can use a GNU binary
distribution file.� �
$ tar -xf nodebrain-version.tar.gz
$ cd nodebrain-version
$./configure
$ make
$ make check
$ make install DESTDIR=$HOME/nodebrain
$ cd $HOME/nodebrain
$ tar -czf nodebrain-version-platform.tar.gz *
 	
2.3 Installing from GNU Binary Distribution File

If you have a GNU binary distribution file created as shown in the previous section for the
target platform from source, you can install it on a like system by simply extracting the tar
file.

2.3.1 Installing as root to /usr/local

To install to /usr/local as root, change to the root directory and extract the file.� �
cd /
tar -xzf nodebrain-version-platform.tar.gz
 	
2.3.2 Installing to User Home Directory

To install to the home directory of a regular user, change to the home directory and extract
the file. Then set the PATH and NB MODULE PATH environment variables to execute
from your home directory.� �
$ cd ~
$ tar -xzf nodebrain-version-platform.tar.gz
$ export PATH=$PATH:$HOME/usr/local/bin
$ export NB_MODULE_PATH=$HOME/usr/local/lib/nb
 	
If you have success installing to your home directory and the nb command works, add the
two export commands to your profile so they are applied each time you login.

NodeBrain Guide 7

August 2014 Chapter 2: Installing

2.4 Installing from Git Repository

You can download the NodeBrain git repository from SourceForge or GitHub using the
protocol that works best for you.� �
$ git clone http://git.code.sf.net/p/nodebrain/nb nodebrain-nb

-or-
$ git clone git://git.code.sf.net/p/nodebrain/nb nodebrain-nb

-or-
$ git clone https://github.com/trettevik/nodebrain-nb.git nodebrain-nb

-or-
$ git clone git@github.com:trettevik/nodebrain-nb.git nodebrain-nb
 	
After downloading the repository you can checkout the version you want to build using the
version tag. Skip this step if you want to build from the latest code on the master branch.
Then execute the additional commands shown below starting with ./autogen.sh. You will
need the autoconf, automake and libtool packages installed. The ./autogen.sh command
will install some "autostuff" components that are included in the GNU source distribution
tar.gz file, but not included in the source repository. It will then build the configure script.
From there you build using any of the options discussed above for building from a source
distribution file, staring from the ./configure command.� �
$ git tag
$ git checkout version

$./autogen.sh
... use any build options you want from here ...
$./configure
$ make
$ make check
$ make install
 	

8 NodeBrain Guide

Chapter 3: Running August 2014

3 Running

The nb program may be invoked a variety of ways. This chapter describes some of the
options.

3.1 Command Line

The nb program may be run at the command line using one or more command files.� �
$ nb cmdset1.nb cmdset2.nb
 	
3.2 Script

To create a NodeBrain script, place a shebang line at the top of a NodeBrain command file
and give it the executable file permission.� �
#!/usr/bin/nb
...commands...
 	
If the file above is called ‘cmdset.nb’, you can execute it like any other executable script.� �
$ cmdset.nb
 	
3.3 Relocatable Caboodle

Within a caboodle, you should use relative file paths so your application can be easily
cloned or moved. We can assume that all commands within a caboodle are executed with
the working directory set to the root directory of the caboodle. You can also assume that
bin/nb is a symbolic link to the version of nb we want to used within the caboodle.

Now invoking nb at the command line, perhaps within a script, looks like this.� �
$ bin/nb cmdset1.nb cmdset2.nb
 	
Similarly, a script designed to run in a caboodle looks like this.� �
#!bin/nb
...commands...
 	
3.4 Daemon

To run nb as a daemon (background process), use the -d or --daemon option.

On the command line it looks like this.

NodeBrain Guide 9

August 2014 Chapter 3: Running

� �
$ nb -d cmdset1.nb cmdset2.nb [Outside a caboodle]

-- or --
$ bin/nb -d cmdset1.nb cmdset2.nb [Within a caboodle]
 	
In a script it looks like this.� �
#!/usr/bin/nb -d [Outside a caboodle]

-- or --
#!bin/nb -d [Within a caboodle]
...commands...
 	
When started as a daemon, nb first executes all the referenced commands, which usually
results in defining a set of rules. It then moves to the background, enables nodes, and then
switches users if starting as root and a different user was specified. If networking nodes
are included in the rules, they may establish connections or listening sockets when enabled.
The daemon is not attached to a terminal and writes output to a configured log file.

3.5 System Startup

See the System NodeBrain Kit manual for information on running nb at system startup
time. The System Kit provides a startup script, nodebrain.service, and sysconfig file
nodebrain.sysconfig that can be used to implement any number of agents that start when
the system boots up. [Those components will probably be moved to the base nodebrain
package as nb.service and nb.sysconfig in a future release.]
Use the --user=user option to avoid running your agent as root when possible. When
running an agent as root, you should not use modules that enable remote connections.

10 NodeBrain Guide

Chapter 4: Rule Engine August 2014

4 Rule Engine

NodeBrain rule syntax is covered in the NodeBrain Language manual. This chapter is
intended to provide a mental picture of how the rule engine works.

4.1 Spreadsheet Analogy

Imagine the cells of a spreadsheet. Each cell can hold a constant value, or a formula that
computes a value from the values of other cells. Cells are referenced by absolute or relative
row and column. When you update the value or formula in a cell reference by other cells, the
values of the other cells are evaluated. If their values change, the values of cells referencing
them are evaluated. This continues until there are no more cells to evaluate. Since most
people have used a spreadsheet program, this model should be a familiar one.

NodeBrain also has cells that can have a simple value or a formula for computing a value
based on the value of other cells. Unlike a spreadsheet, NodeBrain cells are identified
by their formula, not by rows and columns. Multiple references to the same formula are
references to the same cell. NodeBrain also has special cells called terms that reference a
single cell, providing a name to reference a cell.

Updates to cells are made via assert and alert commands, which update the value or
formula associated with terms. This is like updating cells in a spreadsheet, and NodeBrain’s
response to these changes is also like a spreadsheet.

A rule is another special type of cell. Like a term, a rule cell references a single cell, but
also has an action. When the referenced cell transitions to a true state, the rule "fires" and
the action is taken.

4.2 Expert Analogy

The spreadsheet analogy above applies when NodeBrain is running in the most common
mode, where it simply reacts to new information provided by assertions and alerts. However,
NodeBrain can also operate is a different mode that is more analogous to an expert system.
In this mode, NodeBrain tries to solve for unknowns until every rule has been decided. In
NodeBrain’s system of logic, cells can have true, false, unknown, and disabled values. To
solve for unknowns, rules must be augmented to provide commands that NodeBrain can
issue to find the value of terms whose value is unknown. Like an expert, NodeBrain will
not invoke commands to solve for unknown terms when their value is not required to solve
any rule condition. For example, if a rule has a condition A or B and both A and B are
unknown, NodeBrain will first issue the command to solve for A. If true, the value of B is
not required to know the value of A or B is true.

This approach is similar to that of a doctor diagnosing a patient’s illness, or a car mechanic
troubleshooting a car problem. In both cases, the most expensive tests are avoided if the
less expensive tests can provide an answer. A fun way to experiment with this mode is
to write a set of rules that describe types of trees or animals based on different values
for common terms representing attributes. Then run the rules in interactive mode, where
NodeBrain will prompt for the values of unknown terms until it identifies the type of tree
or animal described by your answers.

NodeBrain Guide 11

August 2014 Chapter 4: Rule Engine

The modes that correspond to the spreadsheet and expert analogies can be used in combi-
nation. Rules running in reactive mode may detect a condition that cause a diagnostic rule
set to be launched to troubleshoot the cause of the condition.

4.3 Inputs and Outputs

Without plugin modules, the rule engine has only two ways to obtain new state or event
information or to take external actions in response: 1) by sourcing rule files with optional
arguments, and 2) by invoking shell commands. A servant script or program can be invoked
as a shell command to either: 1) obtain new state or event information and report it to the
rule engine as commands on stdout, or 2) take external actions in response to new state or
event information.

Modules can implement additional ways to obtain new information and/or respond. For
example, the Syslog module enables NodeBrain to receive syslog messages and parse them,
translating the foreign text into NodeBrain commands. The syslog module also provides
an interface for NodeBrain to send syslog messages in response to monitored conditions. A
Pipe module enables external scripts to report state changes or events to the rule engine
via a named pipe. It also enables the rule engine to send messages to external processes via
named pipes.

With the ability to write servants and modules to provide interfaces to the monitored
environment, there should be no limit to the extensions that can be built to enable the
rule engine to monitor the state of any set of elements or any event stream. That is not
intended to imply the NodeBrain rule engine will always be the best choice for a monitor-
ing application—only that it has the flexibility to adapt to a wide variety of monitoring
applications.

4.4 Check Scripts

A NodeBrain check script is used for regression testing new releases and verifying builds,
ports and installs. You may also find this feature useful for regression testing custom node
modules. One first builds a rule file to test a set of features. The show command is used as
necessary to make sure internal results are as expected. Then the test script is run in check
mode to create a check script by prefixing the file name with a tilde, ~.� �
$ nb ~testname
 	
The generated check script is named testname~. This script is a copy of the one executed,
but with check lines included. A check line is identified by a ~ in column 1. The check
operation is specified in column 2.

12 NodeBrain Guide

Chapter 4: Rule Engine August 2014

� �
’ ’ - Match column 3 to end of line with a line of output.

e.g. "~ text to match goes here"

’^’ - Reset the check buffer as if we matched everything.

e.g. "~^ "

’#’ - Check comment---no operation

e.g. "~# Checking to make sure ..."
 	
A check script is run in check mode to make sure we get identical results later, based on
output.� �
$ nb -b ~testname~
 	
The bail option "-b" in check mode will only bail out on the first check error, not on a
normal error. So a check script can verify that normal error messages are produced.
A check line is "hidden" when a check script is run in normal mode, and displays when
running in check mode.
If you write custom node modules, experiment with this feature as a simple method of
performing regression tests. Check out the samples provided in the check directory of a
NodeBrain distribution.

4.5 Cron Schedules

NodeBrain supports time expressions which create cells that are true during scheduled
intervals of time, and false outside the scheduled intervals. Schedule rules specified in a
crontab, the Unix system scheduling daemon, can be translated into schedule rules in the
NodeBrain language. This section explains how to perform the translation.

Utility Configuration File Format
crontab minute hour mday month wday command
NodeBrain define term on(~(timeExpression)):=command

A timeExpression is composed using time functions. The following table shows how each
cron field translates into a NodeBrain scheduling function.

minute hour mday month wday
Range 0-59 0-23 1-31 1-12 0-6
Value m h d n x
Function m(m) h(h) d(d) n(n) su,mo,tu,we,th,fr,sa

The values in crontab fields can be in any of the following forms, and translate into Node-
Brain scheduling function attributes as shown.

NodeBrain Guide 13

August 2014 Chapter 4: Rule Engine

crontab NodeBrain Description
x x A specific value
x,y,z x,y,z A set of values
x-y x..y All values from x to y inclusive
* All possible values

To form the full NodeBrain time expression for a given crontab entry, string the equivalent
scheduling function for each field together, left to right, separating the functions with a
period. This is illustrated in the following table with examples.

minute hour mday month wday Time Expression
0 0 * 1-5 * ~(m(0).h(0).n(1..5))
10 * * * * ~(m(10))
0 0 * * 0 ~(m(0).h(0).su)
20 4 1-15 * * ~(m(20).h(4).d(1..15))
5 10 1,7,9 * 1 ~(m(5).h(10).d(1,7,9).mo)
5 10,14 1,7,9 * 1 ~(m(5).h(10,14).d(1,7,9).mo)

NodeBrain scheduling expressions enable possibilities not supported by cron as illustrated
by the following example.� �
14:00 on the Tuesday of the week of the last Friday of the month
define projectReview cell ~(h(14).tu.w.fr[-1]n);
 	
Since NodeBrain schedule conditions are cells, objects that have a formula and value, they
can be combined with other cell expressions to form a more complex condition. In the
following example we include a reference to the number of items scheduled for review. A
reminder is sent to all team members only if there is more than one item to review.� �
14:00 on the Tuesday of the week of the last Friday of the month
define projectReview cell ~(h(14).tu.w.fr[-1]n);
define projectReviewNotice on(projectReview and items4Review>1)\

:$RemindTeam("Project Review Starting")
 	
See the NodeBrain Language manual for more information on time conditions.

14 NodeBrain Guide

Chapter 5: Networking August 2014

5 Networking

NodeBrain may be used by an application that does not require network communication.
If this is the case for your application, no need to read this chapter.
However, the Node in the name NodeBrain is based on both internal and external notions.
There are rule nodes within a NodeBrain agent, and an agent may be a node within a
network of agents. A network of agents may be distributed over multiple servers, requiring
network communication.
In the earliest versions of NodeBrain, the notion of running as a network of agents was
so much the intent that a form of communication now implemented by the Peer module
was built-in to the interpreter, and had special supporting commands. That eventually
seemed like a bad idea, and the functionality was moved to the Peer module as just one
option available, and one that relied on the same command syntax provided for every other
module.
You are free to use any method of network communication available to address the needs of
your application. This may be done using a module provided with NodeBrain, or by using
available alternatives.

5.1 Networking Node Modules

There are modules provided in the nodebrain package that support network communication
of various types. Some are intended to connect an agent to other applications using standard
protocols. A couple, Peer and Message, are intended for communication between two or
more NodeBrain processes. Because these do not implement standard protocols (although
based on standard lower level protocols) you should not attempt writing your own code
to communicate with them. Such an attempt would not be harmful, just wouldn’t be
a productive use of your time. Instead, consider using these modules for their intended
internal purpose, and use modules that implement standard protocols for communication
with external components.
You can review the list of modules online at http://nodebrain.org to see if any meet your
needs. If not, you might consider writing your own module if tight integration with Node-
Brain is required. Where looser integration is sufficient, it is normally easier to implement.

5.2 Networking Servants

You can write servants in any language you like to enable network communication with
a NodeBrain agent. Your servant can communicate with NodeBrain via stdin, stdout,
and stderr, while communicating with a remote application component via any method
you choose to implement. Please consider the security risks when doing this, and select a
protocol that meets your authentication and encryption requirements.

5.3 SSH and SCP Commands

Don’t overlook the possibility of addressing your networking requirements with ssh and
scp commands. You can invoke these commands directly in NodeBrain rule files, and from
within scripts invoked by rule files.

NodeBrain Guide 15

August 2014 Chapter 5: Networking

5.4 SSH Tunnels

An SSH tunnel may be helpful to secure network communication that uses an insecure
protocol. The following command establishes a tunnel between ssh daemons on the local
host and host B. A connection to port A on the local host is serviced by a connection to
port B on host B.� �
ssh -2 -f -N -L portA:localhost:portB hostB
 	
5.5 IPSec Tunnels

You may also consider using an IPSec server-to-server tunnel as a method of securing
communication that would otherwise be insecure.

16 NodeBrain Guide

Chapter 6: Security August 2014

6 Security

Because NodeBrain can issue any shell command and supports a variety of methods of
accepting shell commands from external sources, one can easily introduce security vulnera-
bilities. It is important to understand the potential risks and take steps to avoid or reduce
them.

6.1 Code Scanning

The Coverity Scan service is used to perform static analysis on NodeBrain source code. This
does not ensure defect free code, but enables many defects to be discovered and resolved
before release, often defects that would not be discovered by other forms of testing.
If you write custom NodeBrain modules, you should scan your code with the best source
and/or binary scan tools available to you. This will reduce the number of security vulner-
abilities your modules introduce to your application.

6.2 File Permissions

Because NodeBrain reads rules from files and executes shell commands specified in these
files, it is important to manage the file permissions on your rule files to minimize the security
risk. It is best to have all files within a caboodle owned by a single user, with permission to
write granted only to the owner. This requires that all NodeBrain agents associated with a
caboodle run as the owning user.

6.3 Identity and Rank

Because NodeBrain can receive commands from outside a caboodle via node modules, it
uses identity and rank to control access to rules within memory. Every node is owned by an
identity and every command is issued by an identity. Node modules that accept commands
from outside the caboodle are required to associate each command with an authenticated
identity. Updates to cells are restricted to the owner of the node containing the cell, or
identities ranked with global permission to update cells. Commands issued to a node are
also restricted to the owning identity or identities with global permission.
Warning: This control mechanism has not been rigorously tested. Before relying on this
feature, you should test it with your own rule set. If you discover a bug or weakness in this
feature, please report it by sending an email to bugs@nodebrain.org.

6.4 Module Security

Modules can introduce security risks, particular those that accept commands over the net-
work or from other users on the local system. Read module documentation and follow any
security recommendations.

6.5 Root Agents

If you run an agent under the root user, you should not use any module that enables
commands to come from outside your caboodle. All rule files used by the agent should be
owned by root and either read-only or write restricted to root.

NodeBrain Guide 17

August 2014 Chapter 6: Security

You may be able to avoid running an agent as root by using sudo to issue commands
requiring root permissions. This enables you to use the sudo configuration file to limit the
commands that can be issued with root permissions by your agent.
For agents that need to listen to restricted ports below 1024, you can use the --user
option to start as root and then switch to another user after the listening sockets have been
established.

18 NodeBrain Guide

Chapter 7: Performance August 2014

7 Performance

NodeBrain rule engine performance varies significantly depending on your rule set and the
computing resources provided by the host system. The numbers listed in this chapter
provide only a rough estimate of the performance to expect. The measures reported here
were obtained on a virtual private server, so this is unscientific. If you have dedicated
hardware and skills in performance testing, please consider contributing your own results.

7.1 Test Platform

The following platform was used to obtain the test results shown in this document.

OS CentOS 6.4 GNU/Linux, Kernel 2.6.32
CPU Intel Xeon E5645 2.40GHz
RAM 2GB

Because NodeBrain is not multi-threaded, performance tests using a single NodeBrain pro-
cess will not improve with multiple processors. These measures are based on the utilization
of a single processor core. In a real NodeBrain application where high performance is
needed, the monitoring problem is distributed over multiple NodeBrain processes which
collectively make use of the available CPU’s.

7.2 Test Conditions

To measure only the performance of the rule engine, output was suppressed during tests to
minimize disk activity. This is done with the use (hush) directive.
Rule files of various sizes for different rule set characteristics are generated by a script
distributed as ‘bin/nbgenperf’ within the build directory of the GNU source distribution
starting in release 0.9.01. For each rule set, a set of assert or alert commands is generated
so that each command will trigger one of the rules in the set. Similar command files are
generated where no assertion triggers a rule, and where every assertion reports unchanged
values. Predictably, assertions that don’t fire rules or don’t change values have better
performance than rules that change values and fire rules. While all of these cases are
important to test, not all are equally interesting, so only the results for the rule-triggering
command sets are reported here.
In this set of tests, a flat name space has been used. In other words, rules are not partitioned
into multiple nodes. The partitioning of rules and terms into nodes generally improves
performance.

NodeBrain Guide 19

August 2014 Chapter 7: Performance

7.3 Relational Term-Rich Rules Assert Test

The relational term-rich rules assert test uses assert commands on a set of on rules with
far more terms than values in relational conditions.� �
Rules - where X=0,1,2,...,N-1
define rX on(!aX and bX<>"X");
Assertions - 4 million times, where X=0,1,2,...,N-1 repeating
assert !aX,bX="X+1";
 	
The number of rules, N, is shown on the horizontal axis in the chart below.

Earlier versions of NodeBrain handled this type of rule set well at 10,000 rules and below.
Performance dropped off above 10,000 rules more quickly. Version 0.9.00 introduced hash
tables that grow with the number of objects, enabling it to achieve higher performance
when the number of rules becomes outrageous.

20 NodeBrain Guide

Chapter 7: Performance August 2014

7.4 Relational Value-Rich Rules Assert Test

The relational value-rich rules assert test uses assert commands on a set of on rules with
far more values than terms in relational conditions.� �
Rules - where X=0,1,2,...,N-1
define rX on(a=X and b<>"X");
Assertions 4 million times, where X=0,1,2,...,N-1 repeating
assert a=X,b="X+1";
 	
The number of rules, N, is shown on the horizontal axis in the chart below.

Relational value-rich rule sets were not anticipated until version 0.9.00. The performance
of prior versions on this test was quite poor. This is because the rule engine operated
like described in the Spreadsheet Analogy section of the Rule Engine chapter. Version
0.9.00 introduced a shortcut to bypass many evaluations of cells with relational operators
that reference both a variable cell and a constant cell. Every cell has an axon tree that
identifies all referencing cells. When a large number of the referencing cells have a relational
operator and the other operand is a constant, an axon accelerator cell is injected to minimize
evaluation on change. Since nodebrain ensures there is only one cell with a given formula,
only one referencing cell with the = operator and a constant as the other operand can be
true at any given time. A change turns it to false, and a binary search can quickly find the
one false referencing cell that turns to true, if any. With 1,000,000 rules, this enhancement
improved the performance from 0.94 to 154,978 assertions per second.

NodeBrain Guide 21

August 2014 Chapter 7: Performance

7.5 Relational Value-Rich Rules Alert Test

The relational value-rich rules alert test uses alert commands on a set of if rules with far
more values than terms in relational conditions.� �
Rules - where X=0,1,2,...,N-1
define rX if(a="abcX" and b="defX" and c="xyzX");
Asserts - 4 million times, where X=0,1,2,...,N-1 repeating
alert a="abcX",b="defX",c="xyzX";
 	
The number of rules, N, is shown on the horizontal axis in the chart below.

A good portion of the change in performance on this test from 0.8.15 to 0.9.00 is the same
as explained for the previous test. However, if rules had another problem when a large
number were specified for a single node. An if rule fires on every alert when true, unlike
on and when rules that fire only when they transition to true. This requires scheduling them
to fire under a different mechanism. The scheduling mechanism for if rules was enhanced
in 0.9.00 to achieve better performance.

22 NodeBrain Guide

Index August 2014

Index

A
agents . 2
alert test . 22
apt-get . 5
assert test . 20, 21

C
C API . 4
caboodle . 9
caboodles . 2
check scripts . 12
code scanning . 17
command line . 9
concepts . 1
creating GNU binary distribution 7
creating RPM . 7
cron schedules . 13

D
daemon . 9

E
excluding modules . 6
expert analogy . 11

F
file permissions . 17

G
git repository . 8
GNU binary distribution file . 7
GNU source distribution file . 5

I
identity and Rank . 17
inputs and outputs . 12
installing . 5
installing as root . 6, 7
installing to user home . 6, 7
IPSec tunnels . 16

K
kits . 3

M
module security . 17
modules . 3

N
networking . 15
networking node modules . 15
networking servants . 15

O
openssl . 6

P
package repositories . 5
Performance . 19
plans . 3

R
root agents . 17
rule engine . 11
rule language . 1
running . 9

S
script . 9
security . 17
servants . 2
spreadsheet analogy . 11
ssh and SCP commands . 15
ssh tunnels . 16
system startup . 10

T
test conditions . 19
test platform . 19

Y
yum . 5

NodeBrain Guide 23

	Concepts
	Rule Language
	Agents
	Caboodles
	Servants
	Modules
	Kits
	Plans
	C API

	Installing
	Installing from Package Repositories
	yum
	apt-get

	Installing from GNU Source Distribution File
	Installing as root to /usr/local
	Installing to Your Home directory
	Excluding OpenSSL and Dependant Features
	Excluding Node Modules (Plugins)
	Creating an RPM file
	Creating a GNU Binary Distribution file

	Installing from GNU Binary Distribution File
	Installing as root to /usr/local
	Installing to User Home Directory

	Installing from Git Repository

	Running
	Command Line
	Script
	Relocatable Caboodle
	Daemon
	System Startup

	Rule Engine
	Spreadsheet Analogy
	Expert Analogy
	Inputs and Outputs
	Check Scripts
	Cron Schedules

	Networking
	Networking Node Modules
	Networking Servants
	SSH and SCP Commands
	SSH Tunnels
	IPSec Tunnels

	Security
	Code Scanning
	File Permissions
	Identity and Rank
	Module Security
	Root Agents

	Performance
	Test Platform
	Test Conditions
	Relational Term-Rich Rules Assert Test
	Relational Value-Rich Rules Assert Test
	Relational Value-Rich Rules Alert Test

	Index

