
Baseline NodeBrain Module

Release 0.9.02

Baseline NodeBrain Module
August 2014
NodeBrain Open Source Project

Release 0.9.02

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2010-09-13 Title: Baseline NodeBrain Module
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Source Project

Version 0.1
• Initial prototype. This document describes the Baseline module as first

introduced with NodeBrain 0.8.3, with very little experimentation on real
world problems having been performed to validate the design. We anticipate
changes to this document as the module evolves, hopefully quickly, to a
version 1.0.

Preface

This manual is intended for users of the Baseline NodeBrain Module, a plug-in for sta-
tistical anomaly detection. The Baseline module was first introduced in NodeBrain 0.8.3
in September 2010. This module should be treated as a prototype. It has not yet been
exercised enough to fully validate the design. We expect it to evolve as we gain experience.

A statistical anomaly detection capability has been on the NodeBrain to-do list since 2003.
Although theoretically interesting, and potentially useful, we did not consider it a high
priority. Around 2008, it moved into the "management requested" category, but continued
at a lower priority than other projects consuming development resources. In August 2010,
disruption on another project requiring a temporary halt for redesign and rescheduling
provided a nice opportunity to work on this task until the dust settled on the higher priority
project. A several year old draft design was reviewed and then mostly discarded and replaced
by a very simple approach based on the existing Tree module. This made it possible to
create the initial prototype in a couple days.

Documents

NodeBrain Guide - Information on using nb
NodeBrain Tutorial - A gentle introduction to nb and the rule language
NodeBrain Language - Rule language syntax and semantics
NodeBrain Library - C API

Document Conventions

Sample code and input/output examples are displayed in a monospace font, indented in
HTML and Info, and enclosed in a box in PDF or printed copies. Bold text is used to bring
the reader’s attention to specific portions of an example. In the following example, the first
and last line are associated with the host shell and the lines in between are input or output
unique to NodeBrain. The define command is highlighted, indicating it is the focus of the
example. Lines ending with a backslash \ indicate when a command is continued on the
next displayed line. This is supported by the language within source files, but not for other
methods of command input. If you copy an example of a command displayed over multiple
lines, you must enter it as a single line when used outside the context of a source file.

� �
$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";
> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\

e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NB000I Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$
 	

Table of Contents

1 Concepts . 1
1.1 Average Value . 1
1.2 Deviation . 1
1.3 Average Deviation . 1
1.4 Standard Deviation . 2
1.5 Weight . 2
1.6 Tolerance . 2
1.7 Thresholds . 2
1.8 Anomaly Level . 3
1.9 Limits . 3
1.10 Cycle Duration . 3
1.11 Period Duration . 3
1.12 Statistical Profiles . 3

2 Tutorial . 5
2.1 Creating Profile Directory . 5
2.2 Constant Expectation . 5
2.3 Asserting Values . 6
2.4 Anomaly Response Rules . 6
2.5 Periodicity . 7
2.6 Learning . 7
2.7 Computer Network Periods . 8
2.8 Summation . 8

3 Commands . 9
3.1 Define . 9

3.1.1 Define Baseline . 9
3.2 Assertions . 10
3.3 Cell Expressions . 11
3.4 Node Commands . 11

3.4.1 Balance . 11
3.4.2 Flatten . 11
3.4.3 Prune . 11
3.4.4 Set . 12
3.4.5 Store . 12
3.4.6 Trace . 12

3.5 Module Commands . 12

4 Triggers . 13

Index . 15

Baseline NodeBrain Module i

Chapter 1: Concepts August 2014

1 Concepts

The Baseline module is a NodeBrain plug-in for statistical anomaly detection. It enables
the use of nodes that maintain a simple statistical profile for a set of measures. A Baseline
node monitors the current value of each measure and alerts when a measure is considered
an anomaly relative to the statistical profile.

1.1 Average Value

An exponentially weighted moving average (EWMA) is maintained for each measure. This
is a common technique for calculating an average with a different weight given to the more
recent values. It also has the advantage of not requiring the storage of past values.� �
a[i] = w v[i] + (1-w) a[i-1] where a is EWMA, w is a weight 0<=w<=1, and v is a value
 	
The contribution of a new value to the average is determined by the weight w. The weight
also determines the rate at which this contribution decays as new values are included. Larger
values of w give more input to a new value, but also cause this contribution to decay more
quickly as new values are included.

1.2 Deviation

The difference between a new value and the current average is called the deviation.� �
d[i] = v[i] - a[i-1]
 	
You can restate the formula for the exponentially weighted moving average as an adjustment
using the product of weight and deviation.� �
a[i] = a[i-1] + w d[i]
 	
1.3 Average Deviation

The average deviation of actual values from the expected values is also computed as an
EWMA. This is an approach for measuring the amount of variation in a measure. It is
calculated like the average except the value is replaced by the absolute difference between
the new value and prior average value.� �
D[i] = w abs(d[i]) + (1-w) D[i-1] where D is the average deviation
 	
Restating this as an adjustment, it looks like this.� �
D[i] = D[i-1] + w abs(d[i]-D[i-1])
 	
Baseline NodeBrain Module 1

August 2014 Chapter 1: Concepts

1.4 Standard Deviation

The average deviation is expected to be 0.8 of the standard deviation for a normal distri-
bution. Use this to approximate a standard deviation by multiplying the average deviation
by 1.25. Specify the threshold as a factor times the approximate standard deviation. It
is common to consider a value more than three standard deviations (3-sigma) an anomaly.
For a normal distribution, 3-sigma will include 97 percent of the values in the normal range.� �
s = 1.25 D where D is the average deviation and s is an approximate standard deviation
 	
1.5 Weight

A Baseline node is assigned a weight factor from 0 to 1 used in the calculation of the average
value and average deviation. Think of this as a level of skepticism about the latest value
or deviation being the new "normal." The lower the value, the slower the Baseline node
will adapt the expectation for any given measure based on new information. A value of 0
can be used to avoid "learning" from new information. This is appropriate in cases where
a "normal" range of values is known and there is no reason to allow actual values to alter
the definition of "normal."

On the other extreme, a value of 1 will cause the Baseline node to use the last value as the
definition of "normal" when assessing a new value. Values from 0.2 to 0.3 are often used
when "learning" is desired, but there is a reasonable level of skepticism about the latest
value representing a new "normal."

1.6 Tolerance

A Baseline node is assigned a tolerance factor that specifies how "abnormal" a value must be
to consider it an "anomaly" worthy of an alert. This factor, a single value for all measures,
is expressed in units of standard deviation, a value specific to each measure. For example,
a value of 3 is used to establish a threshold of 3 standard deviations (3-sigma), which
establishes control limits in steps of 3 standard deviations above and below the average.

1.7 Thresholds

A threshold is an amount of deviation from the average, beyond which a new value is
considered an anomaly. You can define a threshold unit for any given measure as the
tolerance times the standard deviation.� �
u[i] = t s[i-1] where u is the threshold unit, t is the tolerance, and s is the approx-

imate standard deviation

u[i] = 1.25 t D[i-1] substituting 1.25 D for s

u[i] = T D[i-1] where T is an internal tolerance factor 1.25 t
 	
A threshold is established at every positive integer multiple of the threshold unit. The first
threshold is at 1u, the second at 2u, and so on.

2 Baseline NodeBrain Module

Chapter 1: Concepts August 2014

1.8 Anomaly Level

For each measure, a Baseline node maintains a current anomaly level, which is the last
deviation divided by the threshold unit rounded down to the nearest integer.� �
L[i] = int(d[i-1] / u[i-1])
 	
Alerts are triggered when the anomaly level of a measure increases.

1.9 Limits

A control process has upper and lower limits that define the range of normal values. Values
outside these limits are considered anomalies. Define the upper and lower limits in thresh-
old units above and below the average. These limits identify the values where alerts are
triggered, although this is simply a restatement of deviation thresholds.

To avoid triggering alerts for each new data point during an anomalous episode (period of
abnormal values), the upper and lower limits open when the anomaly level increases (this is
when an alert triggers) and close down when the anomaly level decreases. In the formulas
below, a is the average value, n = 1 + L, where L is the anomaly level, and u is the threshold
unit.� �
UL = a + n u upper limit

LL = a - n u lower limit
 	
1.10 Cycle Duration

It is common for measures to have patterns of periodic variation. For example, it is normal
for the temperature to be lower at night than during the day. It is normal for user access to a
computer to increase during user working hours. To take this normal variation into account,
a Baseline node is told the cycle time of the repeating pattern, expressed in minutes. If it is
a daily cycle, then the duration is 24*60 minutes. If it is a weekly cycle, then the duration
is 7*24*60 minutes.

1.11 Period Duration

The cycle time is divided into shorter periods of equal duration. The statistical profile
maintained by a Baseline node includes an average value and average deviation for each
measure for each period. If a one-hour period is specified (60 minutes) with a daily cycle,
there will be 24 periods for which separate statistics are maintained. If the cycle is weekly,
then a 60-minute period duration will generate 168 periods with separate statistics.

1.12 Statistical Profiles

A Baseline statistical profile is maintained as a set of files in a directory. Each file contains
a profile for a single period, providing the average value and average deviation for each
measure. A period profile is just a set of Baseline node commands.

Baseline NodeBrain Module 3

August 2014 Chapter 1: Concepts

� �
.(arg1,arg2,...):set averageValue,averageDeviation;

...
 	
Here’s an example with two measures.� �
.("cpu utilization"):set 60.456,10.45;

.("disk utilization"):set 50.48,20.984;
 	
The filename of a period profile is based on the number of seconds from the start of a cycle.� �
nnnnnnnn.nb
 	
If a one-hour period is used, the filenames will increment by 60*60 or 3600. At any given
UTC time, you can compute which profile to use as follows.� �
t =: UTC time

c =: cycle duration

p =: period duration

T = t % c time within the cycle

F = int (T / p) * p file time
 	

4 Baseline NodeBrain Module

Chapter 2: Tutorial August 2014

2 Tutorial

Do not put your faith in what statistics say until you have carefully considered
what they do not say. —William W. Watt

A Baseline node is used to detect statistical anomalies. It does not tell us what is good,
bad, or important. However, it can help to find conditions worthy of further investigation.

2.1 Creating Profile Directory

Create a directory for storing period profiles. Since you are going to create a statisti-
cal profile for weather measurements, name the directory weather, and create it in the
cache/baseline subdirectory of the caboodle (NodeBrain application directory).� �
$ cd CABOODLE

$ mkdir -p cache/baseline/weather
 	
2.2 Constant Expectation

Let’s say you are monitoring the temperature and humidity inside a house where it is
expected to be relatively constant over time. There is no need to manage multiple period
profiles, nor is there a reason to learn a statistical definition of normal. Instead, you can
use a single period with a static profile that you define manually.� �
cache/baseline/weather/00000000.nb

.("temperature"):set 68,2;

.("humidity"):set 45,5;
 	
In this case, define the Baseline node as follows.� �
arguments: directory, weight, tolerance, cycle, period

define indoor node baseline("cache/baseline/weather",0,0.8,60,60):static;
 	
Here’s a quick explanation of your choices.
• The static option is used to avoid updating the profile at the end of a period.
• A weight of 0 is used to avoid adjusting the average based on new actual values. This

is not technically required under the static option, but any other value would be
misleading.

• A tolerance of 0.8 is specified so you can express the range of normal values in the same
units as the measure. This may seem a bit odd, but because of the approximation of
standard deviation, 0.8 standard deviation is 1 average deviation. Since the profile
contains average deviation, you can set it to half the normal range and set the average
to the center of the normal range.

• A one-hour (60 minute) cycle and period are used so only one period profile is needed.
Since the period duration divides into the cycle duration one time, keep repeating a
single period.

Baseline NodeBrain Module 5

August 2014 Chapter 2: Tutorial

2.3 Asserting Values

There is nothing special about the way to make assertions to a Baseline node. You assert
values in the same way you would assert to a Tree node. Here are some examples.� �
indoor. assert ("temperature")=67.4,("humidity")=45.3;

assert x=1,y="abc",indoor("temperature")=67.4,indoor("humidity")=45.3;

indoor. assert x=2,("temperature")=73;
 	

2.4 Anomaly Response Rules

Given the last assertion above, where temperature is asserted to be 73, you may expect the
following alert to be generated by the "indoor" node shown previously.� �
alert _measure="’temperature’",_value=73,_average=68,_sigma=2.5,_deviation=5, \

_threshold=5,_level=1;
 	

By itself this alert does nothing. You need to provide rules to specify a response. Here’s an
example that simply echoes an entry out to an application log, and when it is a temperature
anomaly also logs to the system log.� �
arguments: directory, weight, tolerance, cycle, period

define indoor node baseline("cache/baseline/weather",0,0.8,60,60):static;

alert _measure="...",_value=n,_average=n,_sigma=n,_deviation=n,_threshold=n,_level=n;

indoor. define logecho if(1):$ =echo ‘date‘ "${_measure} value of ${_value} is out of \

range - threshold is ${_threshold}" >> weather.log

indoor. define logger if(_measure="’temperature’"):$ =logger -p local0.notice -t WEATHER \

"${_measure}=${_value} threshold=${threshold}"
 	

Here’s another example where the response is more complicated. The alarmit rule invokes
the alarm macro, which is defined on the third line. The macro makes an assertion to
the alarmMessage cache. The cache logs a message to the system log, but only when the
measure has had no anomaly alerts for at least 1 hour prior. The cacheit rule asserts the
measure name to the anomaly cache, which can be used to check whether a measure has
had an anomaly alert in the past 2 hours.

6 Baseline NodeBrain Module

Chapter 2: Tutorial August 2014

� �
define alarmMessage node cache(~(h):measure,message(1));

alarmMessage. define alarmit if(message._hitState):$ =logger -p local0.notice -t WEATHER \

"${message}"

define alarm macro(msgid,measure,text):% alarmMessage. assert ("%{measure}","%{msgid} %{text}");

keep track of anomalies within the past 2 hours

define anomaly node cache:(~(2h):measure);

arguments: directory, weight, tolerance, cycle, period

define indoor node baseline("cache/baseline/weather",0,0.8,60,60):static;

alert _measure="...",_value=n,_average=n,_sigma=n,_deviation=n,_threshold=n,_level=n;

indoor. define alarmit if(1):$ $alarm("XYZ0001","${_measure}", \

"Weather measure ${_measure}=${_value} threshold=${_threshold}");

indoor. define cacheit if(1) anomaly(_measure);
 	
2.5 Periodicity

Now let’s suppose you live in a barn, where the temperature and humidity are not so
constant, but where the temperature values are expected to vary by time of day. You may
want a profile for every 4-hour period during the day. There would be six periods per
day. The period profiles are stored in files with names incrementing by 4*60*60, or 14400
seconds.

Period Profile
00:00 to 04:00 00000000.nb
04:00 to 08:00 00014400.nb
08:00 to 12:00 00028800.nb
12:00 to 16:00 00043200.nb
16:00 to 20:00 00057600.nb
20:00 to 00:00 00072000.nb

The Baseline node now has a 24-hour cycle time and a 4-hour period.� �
arguments: directory, weight, tolerance, cycle, period

define indoor node baseline("cache/baseline/weather",0,0.8,24*60,4*60):static;
 	
2.6 Learning

Suppose you don’t have a preconceived notion of what a normal range of values is for
your measures. In this case, you want to let the Baseline module create the profiles for
you and adjust the average value and average deviation based on actual values experience
while learning is enabled. To do this, simply remove the static option from the Baseline
node definition and provide a non-zero weight to control how fast to adapt averages to new
actuals. Because you no longer know the range of normal values, you express the tolerance
in standard deviations (e.g., 3 below).� �
arguments: directory, weight, tolerance, cycle, period

define indoor node baseline("cache/baseline/weather",0.2,3,24*60,4*60);
 	
Baseline NodeBrain Module 7

August 2014 Chapter 2: Tutorial

At the end of each period, the profile is updated with weight-adjusted averages for each
measure’s value and deviation.

2.7 Computer Network Periods

Measurements within a computer network (e.g., number of packets by protocol) typically
vary based on user and software schedules that vary by time of day and day of week. If
you are monitoring measures with this type of periodicity, it is appropriate to use a weekly
cycle and hourly period.� �
arguments: directory, weight, tolerance, cycle, period

define packets node baseline("cache/baseline/packetsbyprotocol",0.2,3,7*24*60,60);
 	
2.8 Summation

When your measures are counts (e.g., number of packets by protocol), your information
source may provide counts over units of time much smaller than the period duration. In
this case, you want to sum up the counts from the information source over the period
duration. You do this by specifying the sum option.� �
arguments: directory, weight, tolerance, cycle, period

define packets node baseline("cache/baseline/packetsbyprotocol",0.2,3,7*24*60,60):sum;
 	
Now when you assert values to measures within the Baseline node, the measures are incre-
mented instead of being set to the new value.� �
packets. assert ("icmp")=465,("http")=1024,("smtp")=34; # increment measures
 	
At the end of each period, the measures are all reset to zero when the sum option is used.

8 Baseline NodeBrain Module

Chapter 3: Commands August 2014

3 Commands

This section describes the syntax and semantics of commands used with the Baseline mod-
ule.

3.1 Define

This section describes define commands the Baseline module supports.

3.1.1 Define Baseline

The define command is used to create a Baseline node.� �
define node node baseline("directory",weight,tolerance,cycle,period)[:options];
 	
Parameters Description
directory Path of directory for storing baseline files called period profiles.

This should normally be a relative path within a caboodle, and
the "cache" directory (e.g., "cache/baseline/baseline") is recom-
mended. You should avoid having more than one node, in one or
more agents, referencing the same Baseline profile directory.

weight A real number from 0 to 1 that determines how much weight should
be given to a new value relative to past values.

tolerance The number of standard deviations from the average for which a
given deviation is considered to be within a normal range.

cycle Number of minutes in each cycle for which a pattern of periodic
variation is expected. Examples are daily (24*60) and weekly
(7*24*60).

period Number of minutes in each period within a cycle for which an av-
erage value and average deviation is maintained for each measure.

Option Description
found The found option is assigned a cell expression to be used as a

default value when an element is found by an evaluation but has
no value. This happens when an evaluation has fewer arguments
than the assertion that created the element. For example, if you
assert foobar("abc","def")=5 and evaluate foobar("abc"), the
"abc" element is found, but has no value, assuming it was not
explicitly asserted also. By default, ? (unknown) is returned.� �
found=cellExpression
 	

Baseline NodeBrain Module 9

August 2014 Chapter 3: Commands

notfound The notfound option provides a default value when an element is
not found during an evaluation. The default value for notfound is
? (unknown). A value of 0 can be used to implement the "closed
world assumption," where anything not known to be true is as-
sumed to be false.� �
notfound=cellExpression
 	

order The order option specifies the use of argument values for compari-
son when searching and maintaining binary trees within a Baseline
node. By default, comparisons are performed on the address of ar-
gument value objects for added efficiency. This is possible because
NodeBrain maintains only one object for any given value.

partition The partition option implies the order option and changes the
evaluation operation to match an argument to the element with
the maximum value less than or equal to the argument value. This
enables a domain of values to be partitioned into ranges of values.
For example, a partitioned Baseline node might be used to monitor
the number of traffic accidents by driver age ranges in 10-year
increments.

static Use static to avoid updating the profile at the end of each period.
This is appropriate when the profile defines the acceptable range of
values for each measure, and "learning" is not desired. Although
the weight can be set to 0 to avoid adjusting average value and av-
erage deviation statistics in a profile for known elements, this does
not prevent the Baseline node from updating the profile with new
elements. Use of the static option prevents the addition of new
elements, and (if weight is not zero) enables learning for elements
not included in the profile. However, learning for an element that
is not in the profile develops statistics over all periods, instead of
per period.

sum When sum is used, asserted values are summed up over each period.
The period value is then the sum of all values asserted during the
period. When the sum reaches an upper limit and the assertion and
average are both positive, or a lower limit and the assertion and
average are both negative, an alert can be triggered right away.
However, a lower limit for positive average and upper limit for
negative average must be checked at the end of a period when the
full sum is known.

trace The trace option is used to generate log messages for
troubleshooting.

3.2 Assertions

The Baseline module supports assertions within assert or alert commands.

10 Baseline NodeBrain Module

Chapter 3: Commands August 2014

� �
assert node(arg1[,arg2,...])[=value]; # value must be number or ? (Unknown)
 	
The semantics are similar to the Tree module, except the value assigned to an element
within a Baseline node must be a number. Strings are not allowed. When the sum option
is used by a Baseline node, an assertion to a Baseline node will add to the current value,
otherwise it replaces the current value. If no value is specified, 1 is assumed. If an unknown
value ("?") is assigned, the element is removed.

3.3 Cell Expressions

When a Baseline node is referenced in a cell expression, it presents the value of the spec-
ified element. The example shows a reference within a cell expression of a simple define
statement.� �
define term cell node(arg1[,arg2,...]); # term has value of specified element
 	
3.4 Node Commands

This section describes commands implemented by the Baseline module for use with defined
nodes.� �
node[(arg1[,arg2,...])]:verb [arguments]
 	
3.4.1 Balance

The balance command is used to rebalance the trees within a Baseline node after flatten
or prune commands have made the trees unbalanced.� �
node:balance
 	
3.4.2 Flatten

The balance command is used to completely unbalance the trees within a Baseline node
so they effectively become lists.� �
node:flatten
 	
3.4.3 Prune

The prune command is used to remove elements from a Baseline node.� �
node[(arg1[,arg2,...])]:prune
 	
Unlike an assertion that an element is unknown, which removes the identified element and
the subordinate tree, the prune command only removes the subordinate tree. Using a table
model, it deletes the subordinate table, emptying the cells to the right of the identified cell
and deleting all rows represented by the subordinate table.

Baseline NodeBrain Module 11

August 2014 Chapter 3: Commands

3.4.4 Set

The set command is used to assign the average value and average deviation for an element
in a Baseline node.� �
node(arg1[,arg2,...]):set averageValue,averageDeviation;
 	
Although set commands can be issued at any time, they are primarily used in period
profiles. A period profile is just a file containing set commands. These files are processed
("sourced") at the start of a period and optionally updated at the end of a period.

3.4.5 Store

The store command is used to write the current measures within a Baseline node to a file
in the form of assertions.� �
assert (arg1[,arg2,...])=value;

...
 	
The node name is not included in the assertions. This enables the assertions to be easily
applied to a different node—perhaps not even a Baseline node.

3.4.6 Trace

The trace command is used to toggle the trace option for troubleshooting.� �
node:trace [on|off]
 	
3.5 Module Commands

The Baseline module currently implements no module level commands.

12 Baseline NodeBrain Module

Chapter 4: Triggers August 2014

4 Triggers

When measures reach thresholds, a Baseline node issues an alert to if rules defined for the
node. These alerts have the following form.� �
alert _measure="name",_value=n,_average=n,_deviation=n,_threshold=n,_limit=n, \

_sigma=n,_level=n;
 	
Attribute Description
measure Name of the measure for which the value is outside the specified

limit.
value Value of the measure outside the limit.
average Learned average value for the period.
deviation Absolute value of the different between actual (value) and ex-

pected (average).
threshold Deviation threshold surpassed.
limit Control limit surpassed. This is the average plus or minus the

threshold.
sigma Approximate standard deviation for the period.
level Magnitude of anomaly. threshold=(2**level)*tolerance*sigma

Baseline NodeBrain Module 13

Index August 2014

Index

A
alert . 10, 13
anomaly level . 3
assert . 6, 10
assertions . 10
average . 1
average deviation . 1

B
balance . 11

C
cell . 11
cell expression . 11
commands . 9
Concepts . 1
constant expectation . 5
cycle . 3

D
define . 9
deviation . 1

E
evaluation . 11

F
flatten . 11

L
learning . 7
limits . 3

M
module commands . 12

N
node commands . 11

P
period . 3
periodicity . 7
periods . 8
profile . 5
profiles . 3
prune . 11

R
response rules . 6

S
set . 12
standard deviation . 2
store . 12
summation . 8

T
thresholds . 2
tolerance . 2
trace . 12
triggers . 13
tutorial . 5

W
Weight . 2

Baseline NodeBrain Module 15

	Concepts
	Average Value
	Deviation
	Average Deviation
	Standard Deviation
	Weight
	Tolerance
	Thresholds
	Anomaly Level
	Limits
	Cycle Duration
	Period Duration
	Statistical Profiles

	Tutorial
	Creating Profile Directory
	Constant Expectation
	Asserting Values
	Anomaly Response Rules
	Periodicity
	Learning
	Computer Network Periods
	Summation

	Commands
	Define
	Define Baseline

	Assertions
	Cell Expressions
	Node Commands
	Balance
	Flatten
	Prune
	Set
	Store
	Trace

	Module Commands

	Triggers
	Index

