
Servant NodeBrain Module

Release 0.9.02

Servant NodeBrain Module
August 2014
NodeBrain Open Source Project

Release 0.9.02

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2005-10-12 Title: Servant NodeBrain Module
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Source Project

2010-12-31 Release 0.8.10
• Updates - still needed

Preface

This tutorial is intended for readers seeking an introduction to NodeBrain through a series
of simple examples. Other documents are available for readers looking for a more complete
reference to the rule language, modules, or API (application programmatic interface).
The intent of the examples in this tutorial is to illustrate individual concepts, not to pro-
vide complete working applications or show all related options. We avoid formal syntax
descriptions, thinking you are here because you want to figure it out from examples.
Files referenced in this tutorial are included in the tutorial directory of the NodeBrain
distribution.
See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Guide - Information on using nb
NodeBrain Tutorial - A gentle introduction to nb and the rule language
NodeBrain Language - Rule language syntax and semantics
NodeBrain Library - C API

Document Conventions

Sample code and input/output examples are displayed in a monospace font, indented in
HTML and Info, and enclosed in a box in PDF or printed copies. Bold text is used to bring
the reader’s attention to specific portions of an example. In the following example, the first
and last line are associated with the host shell and the lines in between are input or output
unique to NodeBrain. The define command is highlighted, indicating it is the focus of the
example. Lines ending with a backslash \ indicate when a command is continued on the
next displayed line. This is supported by the language within source files, but not for other
methods of command input. If you copy an example of a command displayed over multiple
lines, you must enter it as a single line when used outside the context of a source file.� �
$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";
> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\

e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NB000I Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$
 	

Table of Contents

1 Concepts . 1
1.1 Servant Command . 1
1.2 Servant Node . 1
1.3 NodeBrain as Servant . 1

2 Tutorial . 3
2.1 Creating a Servant Program . 3
2.2 Specifying a Servant Node . 3
2.3 Execution . 3

3 Commands . 5
3.1 Define . 5
3.2 Node Commands . 5

4 Triggers . 7

Index . 9

Servant NodeBrain Module i

Chapter 1: Concepts August 2014

1 Concepts

In NodeBrain terminology, a servant is a shell command executed as a child process to
NodeBrain. A servant may communicate with NodeBrain via the servant’s stdin and
stdout. Servants makes it easy for programmers to develop in their favorite programming
languages when interfacing to NodeBrain rules. Scripting languages like Perl are convenient
for creating servants. You should only consider writing new NodeBrain modules when a
problem cannot be solved as well by writing a servant.

1.1 Servant Command

A servant command ("-" or "=") is a convenient may to execute a shell command as a child
process. The command may perform a function that does not require communication with
NodeBrain, or it may return commands and log messages for NodeBrain to process. See
the NodeBrain Language Reference for the syntax of servant commands ("-" and "=").

1.2 Servant Node

A servant node, implemented by the Servant module, is also used to execute a shell command
as a child process. But a servant node is different than a servant command in the following
ways.
1. Rules can send messages to a servant node on the servant’s stdin in addition to ac-

cepting commands on the servant’s stdout.
2. Servant nodes are not enabled (spawned) until NodeBrain enters a server mode. This is

necessary in the case of daemons (-d) because the NodeBrain process terminates when
it spawns itself as a daemon. Any processes started before entering daemon mode are
orphaned and no longer able to communicate on stdin or stdout. This is also helpful
for other server modes (e.g., servant) because it enables all the startup rules to be fully
defined before a servant starts generating commands.

3. In a future release you will be able to use the enable and disable commands to start
and stop servant nodes. This is possible because they have a term (name) that can
be used as a reference. The servant command ("-" or "=") only identifies a servant
by process ID (PID), and although the PID is displayed and can be referenced in
shell commands like kill, the PID is not captured in a way that NodeBrain rules can
reference.

1.3 NodeBrain as Servant

A servant node can run NodeBrain (nb) in a new process the same way it runs other servant
programs and scripts. The servant module’s support for two-way message communication
between processes enables a NodeBrain application to be divided into multiple processes.
When you define a servant that executes NodeBrain, messages sent to stdin and received
from stdout are all NodeBrain commands. This allows the processes to share information
and make decisions or take actions as a service to each other.
When NodeBrain is run as a servant to another NodeBrain process, use the -s (servant)
option if you want the child to run as a server. Use the "=" option instead if you want the
child to operate in batch mode.

Servant NodeBrain Module 1

August 2014 Chapter 1: Concepts

The NodeBrain Language Reference provides a description of NodeBrain options and the
full syntax of the servant command ("-" or "="), which is key to understanding the syntax
used by the servant module.

2 Servant NodeBrain Module

Chapter 2: Tutorial August 2014

2 Tutorial

In order to become the master, the politician poses as the servant. —Charles
de Gaulle (1890–1970)

NodeBrain is not intended to be the master of all things. As in politics, it is often more
convenient to let a servant be the master. In this tutorial, you will learn how to create
a servant in your favorite programming language to obtain information needed to make
decisions. You will see that when a servant sends commands to NodeBrain, it becomes the
master—like a politician once elected.

2.1 Creating a Servant Program

To keep it simple and only hint at something useful, let’s create a servant script using Perl
that pretends to tell you the cost of gas and bread, something every politician should be
prepared to include in a campaign speech.� �
#!/usr/bin/perl

File: tutorial/Servant/charles.pl

my $gas=2.50;

my $bread=1.10;

$|=1;

while(<>){

chomp($_);

if(/gas/){print("assert gas=$gas;\n");$gas+=.50;}

elsif(/bread/){print("assert bread=$bread;\n");$bread+=.25}

else{print("alert msg=\"item ’$_’ not recognized\";\n");}

}
 	
2.2 Specifying a Servant Node

Now you need some rules to use the servant program. Create a script that looks like this.� �
#!/usr/local/bin/nb -s

File: tutorial/Servant/charles.nb

define price node servant:|=|:./charles.pl
define ouch on(gas>4 or bread>3):stop;

define getgasprice on(~(3s)):price:gas

define getbreadprice on(~(3s)):price:bread
 	
The Servant node module specification includes an = command to specify the program and
what to do with stdout and stderr. It also supports a leading pipe (|) to enable the
sending of text to the program on stdin.

2.3 Execution

This script is designed to run like an agent without detaching from the terminal. The -s
option is the trick. The script will pause for 3 seconds between scheduled events, so just be
patient and the script will end when the price of one of the items gets too painful.

Servant NodeBrain Module 3

August 2014 Chapter 2: Tutorial

� �
$./charles.nb

2008/08/21 19:08:28 NB000I Argument [2] ./charles.nb

> #!/usr/local/bin/nb -s

> # File: tutorial/Servant/charles.nb

> define price node servant:|=|:./charles.pl

> define ouch on(gas>4 or bread>3):stop;

> define getgasprice on(~(3s)):price:gas

> define getbreadprice on(~(3s)):price:bread

2008/08/21 19:08:28 NB000I Source file "./charles.nb" included. size=194

2008/08/21 19:08:28 NB000T Servant mode selected

---------- --

2008/08/21 19:08:28 NM000I servant price: Enabling|=|:./charles.pl

2008/08/21 19:08:28 NM000I servant price: Enabled[21633] |=|:./charles.pl

2008/08/21 19:08:31 NB000I Rule getbreadprice fired

: price:bread

2008/08/21 19:08:31 NB000I Rule getgasprice fired

: price:gas

> price. assert bread=2.1;

> price. assert gas=3.25;

2008/08/21 19:08:34 NB000I Rule getbreadprice fired

: price:bread

2008/08/21 19:08:34 NB000I Rule getgasprice fired

: price:gas

> price. assert bread=2.35;

> price. assert gas=3.75;

2008/08/21 19:08:37 NB000I Rule getbreadprice fired

: price:bread

2008/08/21 19:08:37 NB000I Rule getgasprice fired

: price:gas

> price. assert bread=2.6;

> price. assert gas=4.25;

2008/08/21 19:08:37 NB000I Rule ouch fired

: stop;

2008/08/21 19:08:37 NB000I [21633] Killed(1)

2008/08/21 19:08:37 NB000I NodeBrain nb[21632] terminating - exit code=0
 	

4 Servant NodeBrain Module

Chapter 3: Commands August 2014

3 Commands

This section describes the syntax and semantics of commands used with the Servant module.

3.1 Define

A servant is defined as a node, where the foreign text includes the full syntax of a servant
command ("-" or "=").� �
Syntax

servantDefinition ::= define š term š node [̌s servantSpec] •
servantSpec ::= servant [(servantOptions (] : [|] servantCmd
servantOptions ::= there are currently no options defined for this

module
servantCmd ::= see "-" and "=" command in the NodeBrain Lan-

guage Reference
 	
3.2 Node Commands

Once NodeBrain is running in a server mode (e.g., agent/daemon/service or servant), you
may pass messages to a servant using a node command. Suppose you define a Perl script
named servant.pl as a servant named servant.� �
define servant node servant:|=:./servant.pl
 	
Once in server mode, you can pass a message to servant.pl on stdin as follows.� �
servant:message
 	
This is how you pass messages to any node. In this case, the servant node module simply
forwards all messages to the specified servant program on stdin.

Servant NodeBrain Module 5

Chapter 4: Triggers August 2014

4 Triggers

There are no triggers provided by the Servant module directly. It is entirely up to the
servant program to determine what commands are sent to NodeBrain and the conditions
that trigger them. Output from a servant may be interpreted as NodeBrain commands in
the servant’s context. This is no different than receiving messages from a servant command
("-:" or "=:"). In both cases, the messages are interpreted as NodeBrain commands within
the context in which they are specified.

Let’s look at a trivial example. Suppose the servant.pl looks like this.� �
#!/usr/bin/perl

use FileHandle;

STDOUT->autoflush(1); # flush stdout as soon as we write to it

while(<>){

if(/^on$/){print("assert status;\n");}

elsif(/^off$/){print(assert !status;\n);}

else{print("assert ?status;\n");}

}
 	
Now let’s define the following NodeBrain daemon script and call it servant.nb.� �
#!/usr/local/bin/nb -d

set log="servant.log";

-cp /dev/null servant.txt

define taylor node servant:=:tail -f servant.txt

define servant node servant:|=:./servant.pl

servant. define hello on(.status):-echo "hi"
 	
The following commands will cause the daemon to echo "hi" to the log file twice.� �
$./servant.nb

$ echo "servant:on" >> servant.txt

$ echo "servant:off" >> servant.txt

$ echo "servant:on" >> servant.txt
 	
The servant named "taylor" uses the tail command to input anything you write to
servant.txt. You emptied it out in the line before the servant definition to prevent tail
from giving you old commands from a previous session. When you echo the NodeBrain com-
mand (e.g., "servant:on") to servant.txt, tail sends them to the servant node module,
which passes them on to the NodeBrain interpreter. These commands happen to address
the second servant, the one executing the servant.pl script. The values of "on," "off,"
and "on" are sent to this script on stdin. The servant.pl script simply translates these
messages into NodeBrain commands that set a value for the "status" term. When status
is set to 1, the "hello" rule fires.

Obviously the servant.pl script in this example isn’t giving you any information you don’t
already know, so it is of little or no value. You could have just echoed "servant.status=1;"
to servant.txt in place of "servant:on." But the goal here is just to illustrate the servant

Servant NodeBrain Module 7

August 2014 Chapter 4: Triggers

interface. It should not be difficult to imagine more realistic situations where you send
messages to a servant instructing it when to provide information or what information to
provide. For example, the servant could check to see whether a process is running or
how much space is available in a file system. Servants just need to know how to perform
a function or get some information. The NodeBrain rules decide how to respond to the
information provided and when specific actions are appropriate.

8 Servant NodeBrain Module

Index August 2014

Index

C
commands . 5
concepts . 1

D
define command . 5

N
node commands . 5

NodeBrain as Servant . 1

S
servant command . 1
servant node . 1

T
triggers . 7
tutorial . 3

Servant NodeBrain Module 9

	Concepts
	Servant Command
	Servant Node
	NodeBrain as Servant

	Tutorial
	Creating a Servant Program
	Specifying a Servant Node
	Execution

	Commands
	Define
	Node Commands

	Triggers
	Index

