
Peer Module Module

Release 0.9.03

Peer NodeBrain Module
December 2014
NodeBrain Open Source Project

Release 0.9.03

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2005-10-12 Title: Peer NodeBrain Module
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Source Project

2012-06-18 Release 0.8.10
• Revised to reflect changes since release 0.7.3.

Preface

This manual is intended for users of the Peer NodeBrain Module, a plug-in for communica-
tion between NodeBrain processes. This module is expected to change a bit by release 1.0,
primarily by the addition of an option to use TLS in addition to, or instead of, the current
authentication and encryption features.

The Message module is now the preferred method of exchanging high volume messages
between NodeBrain processes. The Peer module is still preferred in low volume cases where
it is helpful to see a response to individual commands.

See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Guide - Information on using nb
NodeBrain Tutorial - A gentle introduction to nb and the rule language
NodeBrain Language - Rule language syntax and semantics
NodeBrain Library - C API

Document Conventions

Sample code and input/output examples are displayed in a monospace font, indented in
HTML and Info, and enclosed in a box in PDF or printed copies. Bold text is used to bring
the reader’s attention to specific portions of an example. In the following example, the first
and last line are associated with the host shell and the lines in between are input or output
unique to NodeBrain. The define command is highlighted, indicating it is the focus of the
example. Lines ending with a backslash \ indicate when a command is continued on the
next displayed line. This is supported by the language within source files, but not for other
methods of command input. If you copy an example of a command displayed over multiple
lines, you must enter it as a single line when used outside the context of a source file.� �
$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";
> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\

e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NB000I Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$
 	

Table of Contents

1 Concepts . 1
1.1 Identity . 1
1.2 Keys . 1

2 Tutorial . 3
2.1 Peer Module Identity Keys . 3
2.2 Peer Module Server Node . 3
2.3 Peer Module Client Node . 4
2.4 Interactive Peer Module Client . 6

3 Commands . 9
3.1 Peer Server Skill . 9

3.1.1 Peer Server Definition . 9
3.2 Peer Queue Skill . 10

3.2.1 Peer Queue Definition . 10
3.2.2 Message Directory and File Names . 10
3.2.3 Message Queue Processing . 12

3.3 Peer Client Skill . 13
3.3.1 Peer Client Definition . 13
3.3.2 Peer Client Command . 14

3.4 Peer Service Skill . 14
3.4.1 Peer Service Definition . 14
3.4.2 Identify Command . 15
3.4.3 Copy Command . 15

4 Triggers . 19

Index . 21

Peer NodeBrain Module i

Chapter 1: Concepts December 2014

1 Concepts

The peer module provides support for external communication between NodeBrain nodes
within the same process, in two separate processes on the same system, or two processes
running on different systems. This includes TCP/IP communication using network or local
domain sockets and communication via peer queue files. Both methods can be combined to
provide store-and-forward transmission of messages to ensure delivery when interrupted by
network or agent outages.

The peer module implements the NodeBrain protocol (NBP) originally built into the Node-
Brain Interpreter.

1.1 Identity

NodeBrain associates permissions with identities, which are nothing more than names to
which permissions are be granted. An identity may map to something less abstract, like a
person, account, application, component, or role. NodeBrain makes no assumptions about
how you map an abstract identity to something specific.

Modules that enable NodeBrain commands to be executed remotely, as the Peer module
does, must map incoming commands to an identity. The Peer module does this by mapping
authentication keys to identities. Each end of a connection (client and server) claim an
identity and each is authenticated by the other using keys. Commands issued locally on
behalf of the peer, are issued under the peer’s authenticated identity.

1.2 Keys

The peer module uses private and shared keys. Shared keys are chryptographically known
as public keys, except here they are not intended to be widely published. Instead they are
shared within a small circle of users, often the same user on multiple servers. Keys are
stored in a key file named ‘$HOME/.nb/nb_peer.keys’, a file readable and writable only by
the owner.

A key file with identities tigger and lion is illustrated below.� �
lion 3.e57f2e4dbe5d8bc4.0.0; # Shared key for lion
tigger 3.be5d8bc4465d3aa7.bd6107c786f72c15.0; # Private key for tigger
 	
The difference between a shared and private key can be seen in the third component, which
is 0 in a shared key.

A new private key can be generated using the identify Peer module command.� �
nb :"peer.identify bear"
 	
The identify command appends a new private key to the key file for the specified identity.

Peer NodeBrain Module 1

December 2014 Chapter 1: Concepts

� �
lion 3.e57f2e4dbe5d8bc4.0.0; # Shared key for lion
tigger 3.be5d8bc4465d3aa7.bd6107c786f72c15.0; # Private key for tigger
bear 5.65d3aa7be5d8bc44.6f72c15bd6107c78.0;
 	

2 Peer NodeBrain Module

Chapter 2: Tutorial December 2014

2 Tutorial

The more elaborate our means of communication, the less we communicate.
—Joseph Priestly (1733–1804)

The peer module is more elaborate than some of the other modules used for communication.
The goal is to communicate less, or at least to be more selective in with whom you com-
municate. This selectivity is accomplished with encryption and key-based authentication.

The files for this tutorial are in the tutorial/Peer directory. The NodeBrain scripts are
executable and I have left off the .nb suffix for fun.

2.1 Peer Module Identity Keys

Before you communicate using the peer module, you must create keys to be used by clients
and servers. To reduce complexity for this example, you’ll create a single key and use it for
both the client and the server as a "shared secret" key. Here’s a script called genkey that
creates a key for an identity called buddy.� �
#!/usr/local/bin/nb

File: tutorial/Peer/genkey

define myService node peer.service;
myService:identify buddy;
 	
The peer module provides a skill called service that supports some helpful commands
associated with peer communication. Use the identify command here. This command
generates a key and places it in a key store for later reference.

Unix and Linux: ~/.nb/nb_peer.keys
Windows: USER_PROFILE/ApplicationData/NodeBrain/nb_peer.keys

The key store is readable only by the owning user and looks like this.� �
$ cat ~/.nb/nb peer.keys
foo 3.3788e45e8f64776b.0.0;

bar 7.b49ad9bfb68a97b8.fab67908064b5cb3.0;

buddy 3.be5d8bc4465d3aa7.bd6107c786f72c15.0;
 	
2.2 Peer Module Server Node

Be alert to give service. What counts a great deal in life is what we do for
others. —Anonymous

A peer server node is alert to give service, in fact, it can even give service to alerts. It
provides a method for a peer client to send any command to a NodeBrain agent: alerts,
assertions, new rule definitions, and so on. It accepts TCP/IP socket connections from
clients and issues received commands in the context of the server node. The server file in
the tutorial/Peer directory looks like this.

Peer NodeBrain Module 3

December 2014 Chapter 2: Tutorial

� �
#!/usr/local/bin/nb -d

File: tutorial/Peer/server

-rm server.log

set out=".",log="server.log";

declare buddy identity owner;
define myServer node peer.server("buddy@./socket"); # Unix domain

#define myServer node peer.server("buddy@127.0.0.1:12345"); # local

#define myServer node peer.server("buddy@0.0.0.0:12345"); # remote

myServer. define r1 on(a=1 and b=2);
 	
Declare an identity buddy that you rank as owner. This is all the interpreter knows about
buddy. Use this same name, buddy, in the specification of the peer server node. The peer
node module requires that a key exist in the key store for this identity, which is why you
created it in the previous section.

Let’s start up the peer server.� �
$./server

2008/06/11 10:27:58 NB000I Argument [1] -d

2008/06/11 10:27:58 NB000I Argument [2] ./server

> #!/usr/local/bin/nb -d

> # File: tutorial/Peer/server

> -rm server.log

[20642] Started: -rm server.log

[20642] Exit(0)

> setout=".",log="server.log";

2008/06/11 10:27:58 NB000I NodeBrain nb will log to server.log

> declare buddy identity owner;

> define myServer node peer.server("buddy@./socket"); # Unix domain

2008/06/11 10:27:58 NB000I Peer keys loaded.

> #define myServer node peer.server("buddy@127.0.0.1:12345"); # local

> #define myServer node peer.server("buddy@0.0.0.0:12345"); # remote

> myServer. define r1 on(a=1 and b=2);

2008/06/11 10:27:58 NB000I Source file "./server" included. size=493

2008/06/11 10:27:58 NB000I NodeBrain nb[20641,19542]daemonizing

$
 	
You are using a Unix domain socket in this tutorial because you don’t need to communicate
with remote clients. To experiment with serving remote clients, you can comment out the
active myServernode and uncomment the remote myServer node. But first you should
experiment with the client in the next section.

2.3 Peer Module Client Node

He who is always his own counselor will often have a fool for his client. —
Hunter S. Thompson (1937–2005)

The peer module enables NodeBrain to play the part of both server and client. This is
not foolish because I am talking about different instances of NodeBrain, different processes
("skulls"), playing the roles of client and server.

The client file in the tutorial/Peer directory looks like this.

4 Peer NodeBrain Module

Chapter 2: Tutorial December 2014

� �
#!/usr/local/bin/nb

File: tutorial/Peer/client

declare buddy identity;
define myClient node peer.client("buddy@./socket"); # Unix domain

#define myClient node peer.client("buddy@localhost:12345"); # local

#define myClient node peer.client("buddy@myhost.mydomain:12345"); # remote

myClient:assert a=1,b=2;
myClient:stop;
 	
Notice you declare the identity buddy and specify the client just like you specified the server
in the previous section. Here there is no requirement to give buddy local permissions.

Because you are going to run this client on the same machine as the server and under the
same user account, the client and server will use the same key store. To run the client from
a different account or machine, you would have to copy the buddy key from the server’s key
store to the client’s key store. You could also configure different private keys for servers and
clients and copy their public keys to the key stores of their peers. That approach provides
better security, but quick success in this tutorial is more important, so stick with shared
secret keys.

Now you can run the client and see what happens.� �
$./client

2008/06/11 10:28:00 NB000I Argument [1] ./client

> #!/usr/local/bin/nb

> # File: tutorial/Peer/client

> declare buddy identity;

> define myClient node peer.client("buddy@./socket"); # Unix domain

> #define myClient node peer.client("buddy@localhost:12345"); # local

> #define myClient node peer.client("buddy@myhost.mydomain:12345"); # remote

> myClient:assert a=1,b=2;
2008/06/11 10:28:00 NB000I Peer keys loaded.

2008/06/11 10:28:00 NB000I Peer b0000=buddy@./socket

2008/06/11 10:28:00 NB000I Rule myServer.r1 fired
> myClient:stop;
2008/06/11 10:28:00 NB000I Peer b0000=buddy@./socket

2008/06/11 10:28:00 NB000I Source file "./client" included. size=450

2008/06/11 10:28:00 NB000I NodeBrain nb[20644] terminating- exit code=0

$
 	
The command myClient:assert a=1,b=2 sends the command assert a=1,b=2 to the
server specified as buddy@./socket. Notice the message Rule myServer.r1 fired. There
is no myServer.r1 defined in the client. This is what happened at the server. When a
peer client issues a command to a peer server, the server lets the client listen in as it reacts
to the command. You can look at it from the server’s point of view by displaying the
agent log, in this case called server.log.

Peer NodeBrain Module 5

December 2014 Chapter 2: Tutorial

� �
$ cat server.log

N o d e B r a i n 0.9.02 (Columbo) 2014-02-15

Compiled Jun 12 2014 19:20:12 x86_64-unknown-linux-gnu

Copyright (C) 2014 Ed Trettevik <eat@nodebrain.org>

MIT or NodeBrain License

--

nb -d ./server

Date Time Message

---------- --

2014-06-11 10:27:58 NB000I NodeBrain nb[20643:1] myuser@myhost

2014-06-11 10:27:58 NB000I Agent log is server.log

2014-06-11 10:27:58 NM000I peer.server myServer: ...

... Listening for NBP connections as buddy@./socket

2014-06-11 10:28:00 NM000I peer.server myServer: buddy@./socket

> myServer. assert a=1,b=2;
2014-06-11 10:28:00 NB000I RulemyServer.r1 fired
2014-06-11 10:28:00 NM000I peer.server myServer: buddy@./socket

> myServer. stop;
2014-06-11 10:28:00 NB000I NodeBrain nb[20643] terminating - exit code=0

$
 	
At 10:27:58 the server started listening for connections. At 10:28 it received a connection
and issued the command assert a=1,b=2 in the myServer context. This triggered rule
myServer.r1, which has no action. In previous tutorials, you’ve learned enough to modify
the rules in server to provide an action and try it again.

Notice the client sends a stop command to the server, which stops it because you’ve given
the client full owner permissions. This means you have to restart the server each time you
run the client. Only in a tutorial would you do something this silly.

2.4 Interactive Peer Module Client

If you want to experiment further with the peer module, restart the server and try the
iclient file instead of client.� �
$./server

$./iclient
 	
The iclient script looks like this.� �
#!/usr/local/bin/nb -‘myClient:

File: iclient

declare buddy identity;

define myClient node peer.client("buddy@./socket"); # Unix domain
 	
The strange looking she-bang ("#!") line has an argument that supplies an interactive
command prefix and enables an option to automatically go into interactive mode after
processing all command arguments. This step causes your prompt to look like this.

6 Peer NodeBrain Module

Chapter 2: Tutorial December 2014

� �
myClient:>
 	
Any command you enter is now prefixed by the value myClient:, causing all your commands
to be directed to your peer client node, which sends them to your peer server. Enter the
highlighted text when prompted to get the same results as shown below.� �
$./iclient

2008/06/11 16:48:39 NB000I Argument [1] -’myClient:

> #!/usr/local/bin/nb -’myClient:

> # File: tutorial/Peer/iclient

> declare buddy identity;

> define myClient node peer.client("buddy@./socket"); # Unix domain

2008/06/11 16:48:39 NB000I Source file "./iclient" included. size=209

2008/06/11 16:48:39 NB000I Reading from standard input.

---------- --------

myClient:> show r1
2008/06/11 16:48:45 NB000I Peer keys loaded.

2008/06/11 16:48:45 NB000I Peer b0000=buddy@./socket

> myServer. show r1

r1 = ! == on((a=1)& (b=2));

myClient:> assert a=1,b=2;
2008/06/11 16:49:10 NB000I Peer b0000=buddy@./socket

> myServer. assert a=1,b=2;

2008/06/11 16:49:10 NB000I Rule myServer.r1 fired

myClient:> ’foo.
foo.> ’
> quit
2008/06/11 16:49:15 NB000I NodeBrain nb[23715] terminating - exit code=0

$
 	
This example illustrates how a single quote at the beginning of an interactive command can
be used to change the command prefix.
The little tricks illustrated in this section are features of the interpreter, not the peer
module, but when combined with the peer module make it a bit easier to use NodeBrain
as a primitive interactive client to a NodeBrain agent.

Peer NodeBrain Module 7

Chapter 3: Commands December 2014

3 Commands

This section describes commands used with the Peer modules.

3.1 Peer Server Skill

A peer server accepts connections and serves requests from other NodeBrain processes using
compatible peer node modules. The server authenticates clients and issues commands sent
from the client within the context of the server node. It simply accepts commands from
remote nodes and passes them on to the interpreter using the clientß s authenticated identity.

3.1.1 Peer Server Definition

Syntax

peerDefineCmd
::= define $ term $ node [$ peerServerDef] "

peerServerDef
::= peer.server(ø serverSpec Æ);

serverSpec
::= serverIdentity @ socketSpec

serverIdentity
::= name of server identity for authentication

socketSpec
::= inetSocket | localSocket

inetSocket
::= [hostname | ipaddress] : port

localSocket
::= filepath

The following example defines a peer server node that accepts connections from other servers
on port 50000 using identity "fred."� �
define buddy node peer.server("fred@0.0.0.0:50000");
 	
On servers that have multiple network interfaces, connections may be limited to a given
interface by specifying the interface address.� �
define buddy node peer.server("fred@192.168.1.100:50000");
 	
Access can be limited to the local host to avoid remote connections by specifying the
loopback address.� �
buddy node peer.server("fred@localhost:50000");
 	
Peer NodeBrain Module 9

December 2014 Chapter 3: Commands

Access can also be limited to the local host by using a local domain socket.� �
define buddy node peer.server(ø fred@/tmp/mysocketÆ);
 	
The Assert, Evaluate, and Command methods are not implemented for this skill.
Enable and Disable methods are implemented, so the ENABLE and DISABLE commands can
be used to control when the node listens for connections.� �
> disable term; [Stop listening for connections.]

> enable term; [Start listening for connections.]
 	
3.2 Peer Queue Skill

A peer queue provides a file-based mechanism for passing data between application compo-
nents. The design is intended to be simple, rugged, and independent. It is not intended for
high performance.
The file structure and locking scheme is sufficiently simple to enable non-NodeBrain appli-
cation components to directly write to or read from a peer message queue. However, it is
normally best to use the nb program with the peer module to send and receive messages
when using a peer message queue.

3.2.1 Peer Queue Definition

Syntax

peerQueueDefine
::= define $ term $ node [$ peerQueueDef] "

peerQueueDef
::= peer.queue(ø queueSpec Æ , schedule);

queueSpec
::= queue directory path

schedule ::= cell expression—normally a time condition

The following example would be used to process commands from a queue directory with
a path off /tmp/queue/automon. This queue would be checked every 30 seconds for new
commands.� �
define input node peer.queue("/tmp/queue/automon",~(30s));
 	
3.2.2 Message Directory and File Names

A message file path has several components: queue, identity, time, count, and type.� �
queue/identity/time.count.type
 	
10 Peer NodeBrain Module

Chapter 3: Commands December 2014

The queue and identity components are specified when a peer is defined.� �
define term node peer("identity@(queue)");
 	
It is important to understand that only file permissions can prevent an unauthorized user
from writing a message under any given identity. It is best when producer and consumer
processes run under the same user account.

The type component of a message file name identifies the type of content and file format.

‘Q’ Header

‘q’ command queue

‘c’ command

‘t’ text

Each message directory (queue/identity) has a header file used to control message file names.� �
queue/identity/00000000000.000000.Q
 	
This file contains a simple 21 byte record of the form show here, where ttttttttttt is a UTC
time and cccccc is a counter.� �
ttttttttttt.cccccc
 	
A command queue message file contains one command per line with a special character in
the first position of each line.

‘>’ unprocessed command

‘#’ processed command

A command queue message file (.q) is processes by executing each command and marking
it complete by replacing ">" with "#". This enables a consumer to terminate processing
in the middle of a command queue message file and restart where it left off later.

A command message file (.c) is processed by interpreting each command without marking
individual commands complete. This is just like including a ".nb" source file.

The peer node module does not yet have the needed functionality to process text message
files (.t) and package message files (.p), although it can write them to a message queue to
be processed by a custom consumer program. An example of a text message file is an email
received by the Mail node module. These files can be transmitted to a message queue on
another host for parsing. The structure of a package message file has not been defined. We
are simply reserving this type code for future use. We expect it to be used for managing rule
file updates or NodeBrain software updates. Header information will describe the package
file content and required actions.

Peer NodeBrain Module 11

December 2014 Chapter 3: Commands

3.2.3 Message Queue Processing

When writing a command to a queue, the peer module references the header file to find
the name of the current command queue message file. If the header file contains a value
like the one shown below, the current command queue message file name is this same value
with ".q" appended.

‘01043454323.000000’
[content of header file]

‘01043454323.000000.q’
[current message file name]

There are three conditions under which the current command queue message file name is
"incremented." This happens when
1. the command queue interval expires
2. a message file of a different type is written
3. a consumer begins reading from a queue

Otherwise, commands are appended to the current command queue message file with a
prefix of ">".
When a queue is specified in a peer definition, a command queue interval may be specified.
This will cause the peer module to start a new command queue message file whenever a
command is written after the current interval has expired. For example, if the command
queue interval is set at 1 hour, at least one command queue message file will be created for
each hour in which a command is queued.
Any time a text (.t), command (.c), or package (.p) message file is queued, the header is
updated to provide a unique file name for the message file. The time component is set to
the current time. If this matches the current command queue time, the count in the header
file is incremented by 2 to skip over the count used by the message file. In other words,
NodeBrain interrupts the current command queue message file to allow another message
file to be queued in order.
When the peer module reads a message queue, it first updates the header record to force
the start of a new commend queue message file. This is similar to the process described
previously, except the counter is only incremented by 1 if the time component doesnß t
change. The message queue directory is then processed only through the file name that was
current before the update. Each message file is locked by producers and consumers to avoid
simultaneous access. A consumer will skip over a busy file and catch it on the next pass.
If a system clock is reset to an earlier time, a peer message queue must preserve file sequence
to avoid attempts to overwrite existing files. This is accomplished by never reducing the
time in the header file. If the count in the header file exceeds 999999, the time component
is incremented and the count is set to 000000. This preserves file name sequence. There is
no dependence on correct times in a message queue. However, when a message queue has
multiple directories (is written using multiple identities), the message files are processed in
order by the messages file names. This is only important when the queue contains several
files, perhaps because the consumer stopped for a long period. It enables the consumer
to process message files in the same general order they were produced. The sequencing of

12 Peer NodeBrain Module

Chapter 3: Commands December 2014

commands from different identities in a backlogged queue will depend on the granularity of
the message queue interval.

3.3 Peer Client Skill

The peer client skill is used to communicate with a peer server and/or a peer queue.

3.3.1 Peer Client Definition

Syntax

peerDefineCmd
::= define $ term $ node [$ peerDef] "

peerDef ::= peer.client(ø peerSpec Æ [, schedule]);

peerSpec ::= [[clientIdentity ~] serverSpec [{ timeout }]] [(qSpec)]

clientIdentity
::= name of client identity to portray

serverSpec
::= serverIdentity @ socketSpec

serverIdentity
::= name of server identity (see peer.server)

socketSpec
::= inetSocket | localSocket

inetSocket
::= [hostname | ipaddress] : port

localSocket
::= filepath (Must include at least one "/" - use "./" if necessary)

qSpec ::= qDirectoryPath [(qInterval)]

schedule ::= See Time Conditions

A peer node can be used to perform four different functions, depending on how it is defined
and what command options are used.

1. Send commands to a remote peer server node.
2. Store commands in a peer message queue.
3. Store-and-forward command to a remote peer server node through a peer message

queue.
4. Process commands from a peer message queue.

Suppose a NodeBrain agent running on yoyo.com has the following peer server node.� �
define server node peer.server("charlie@0.0.0.0:32171");
 	
Peer NodeBrain Module 13

December 2014 Chapter 3: Commands

A NodeBrain client with the following peer node is able to send commands to the agent,
provided the identities "sally" and "charlie" are properly defined on both systems.� �
define client node peer("sally~charlie@yoyo.com:32171");
 	
3.3.2 Peer Client Command

Syntax

peerCmd ::= context[(option)][: text] "

option ::= 0 | 1 | 2 | 3

A peer client command is used to send a single command to a peer server, directly, or
indirectly via a store and forward queue.

If no option is specified, the operation is determined by the combination of server and queue
specified.

Option Server Queue Operation

null No yes Command text is written to queue.
null Yes yes Command text is written to queue and then queue is forwarded if

server is available.
null Yes no Command text sent directly to server

If an option is specified, the operation is determined by the option, unless the requirements
are not met, in which case the option is ignored and the operation is determined as shown
above.

Option Server Queue Operation
0 Allowed Required Command text is written to queue.
1 Required Required Command text is written to queue and then queue is forwarded if

server is available.
2 Required Allowed Command text sent directly to server
3 Required Allowed An interactive session is established with a new ø skullÆ spawned by

the server.

3.4 Peer Service Skill

The service skill supports commands related to peers that are not specific to individual
client and server nodes.

3.4.1 Peer Service Definition

14 Peer NodeBrain Module

Chapter 3: Commands December 2014

Syntax

peerServiceDefine
::= define $ term $ node [$ peerServiceDef] "

peerServiceDef
::= peer.service;

3.4.2 Identify Command

Syntax

identifyCmd
::= node: identify $ identityName [$ bitSize] [$] [; [comment]] "

node ::= peer service node term

bitSize ::= integer

The IDENTIFY command is used to generate a random private identity key. By default a
64-bit key is generated but you may override the bit size with any positive integer value.
The generated identity key is placed in your home directory in a file named ø nb peer.keysÆ
. If the identity name is not already specified, a new entry is appended.� �
identify lilly 32;
 	
The command above would generate a relatively insecure private key and append an entry
like the following to ~/.nb/nb peer.keys� �
lilly 7.f64e1e7f3.f20707fa2.0;
 	
The structure of the key is as follows, where owner is generated as 0 and otherwise not used
by NodeBrain.� �
pubExponent.pubModulus.privateExponent.owner
 	
To protect your private keys, it is important to set nb peer.keys file permissions to allow
read/write by owner only. NodeBrain is not intended for use in publicly shared applications,
so there is no requirement for a public key server. You may construct a public key from
your private key by replacing the third number with 0.� �
lilly 7.f64e1e7f3.0.0;
 	
A NodeBrain peer public identity key should be managed as a shared secret key. Share it
only with trusted administrators of peers requiring communication with your NodeBrain
application.

3.4.3 Copy Command

Peer NodeBrain Module 15

December 2014 Chapter 3: Commands

Syntax

peerCopyCmd
::= node : copy (copyToFileSpec | copyToQueueSpec) [; [comment]] "

node ::= peer service node term

copyToFileSpec
::= { a | b } $ peerFileSpec $ peerFileSpec

copyToQueueSpec
::= { c | q | t } $ peerFileSpec $ peerQueueSpec

peerFileSpec
::= [clientNode :] filename

peerQueueSpec
::= [clientNode :] queueNode

clientNode
::= peer client node term

We include documentation of the deprecated COPY command here to support a transition
to the peer copy skill.
The COPY command is used for secure file transfers using NodeBrain peer authentication
and data encryption.
Event monitoring applications often require file transmission for application administration
(e.g., rule file update) and bulk event transfers. For administration, NodeBrain provides
ascii (text) and binary file transfers. The first parameter to the COPY command is "a" for
ascii or "b" for binary.� �
copy a /tmp/newrules.nb @goofy:/tmp/newrules.nb; # ascii file transfer

copy b /usr/local/bin/nb @goofy:/tmp/nb; # binary file transfer
 	
The second and third parameters specify the source file and destination file respectively. A
NodeBrain agent may be used to push or pull a file. When pulling a file, a brain is specified
for the source file.� �
copy a @goofy:/opt/mymonitor/rules.nb /tmp/rules.nb; # pull
 	
You may also copy files between two remote servers by specifying NodeBrain agent names
on both the source and destination.� �
copy a @huey:/opt/mymonitor/rules.nb @duey:/tmp/rules.nb;
 	
Use of the NodeBrain COPY command for application administration is optional. This
feature is included for environments where other secure tools are not available.
The COPY command is also used to place a copy of a file into a local or remote NodeBrain
message queue for processing. The first parameter specifies the type of message file to
create.

16 Peer NodeBrain Module

Chapter 3: Commands December 2014

‘c’ command

‘q’ command queue

‘t’ text

When copying to a queue, the destination is a brain name instead of a file name. NodeBrain
will generate a unique file name in the target message queue directory.� �
copy q my_command_set.nb goofy
 	
The message queue directory name is derived from the brain definition and the currently
portrayed identity.� �
declare goofy brain silly@goofus.nodebrain.org:49828[/var/spool/nb];

portray huey;

copy q my_command_set.nb goofy
 	
Given the brain declaration and identity shown above, the copy command would create a
message queue file as follows, where ttttttttttt is the current time (UTC) and nnnnnn is a
unique number for files within that second and "q" is the message file type.� �
/var/spool/nb/goofy/huey/ttttttttttt.nnnnnn.q
 	
Like administrative file transfers, message queue file transfers may have a remote source
and/or destination.� �
copy t @agent1:/tmp/my_command_set.nb @agent2:goofy
 	
This feature is provided for convenient transmission of event data from a source system to
a monitoring system. You may use other tools like ssh and scp for this purpose if preferred
in your environment.

Peer NodeBrain Module 17

Chapter 4: Triggers December 2014

4 Triggers

This module does not implement triggers.

Peer NodeBrain Module 19

Index December 2014

Index

C
commands . 9
concepts . 1
copy comman . 15

I
identify command . 15

K
keys . 1

P
peer client command . 14
peer client defintion . 13
peer client skill . 13
peer queue definition . 10
peer queue skill . 10
Peer Server Definition . 9
peer server skill . 9
peer service definition . 14
peer service skill . 14

T
triggers . 19
tutorial . 3

Peer NodeBrain Module 21

	Concepts
	Identity
	Keys

	Tutorial
	Peer Module Identity Keys
	Peer Module Server Node
	Peer Module Client Node
	Interactive Peer Module Client

	Commands
	Peer Server Skill
	Peer Server Definition

	Peer Queue Skill
	Peer Queue Definition
	Message Directory and File Names
	Message Queue Processing

	Peer Client Skill
	Peer Client Definition
	Peer Client Command

	Peer Service Skill
	Peer Service Definition
	Identify Command
	Copy Command

	Triggers
	Index

