
Caboodle NodeBrain Kit

Release 0.8.17

Caboodle NodeBrain Kit
August 2014
NodeBrain Open Source Project

Release 0.8.17

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2007-11-05 Title: Caboodle NodeBrain Kit
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Source Project

Version 0.6.8 (not released)
• This document, like the software it describes, is a prototype.

2013-02-05 Release 0.8.13
• Converted to Texinfo
• Several updates in preparation for release

2013-05-06 Release 0.8.14
• Minor corrections
• Revisions to cover added and modified plan.

Preface

This document describes the Caboodle NodeBrain Kit. It is intended for users and devel-
opers of NodeBrain application kits. The reader should be familiar with basic NodeBrain
concepts as covered in the NodeBrain Tutorial.
The Caboodle NodeBrain Kit derived from a tool developed in 1998 called the Unix System
Monitor Kit, or Sysmon. The framework components of the original tool have evolved
into the Caboodle NodeBrain Kit, while the application components have evolved into the
System NodeBrain Kit. The original Unix System Monitor Kit (Sysmon) supported options
for monitoring without a NodeBrain rule engine, substituting cron or a system management
agent like HP/OVO to schedule the execution of probes. These options have been removed
from the Caboodle NodeBrain Kit, requiring a NodeBrain rule engine, although integration
with commercial system management agents is still possible and often desirable.
You should expect bugs in releases prior to 1.0. Although this tool has been used success-
fuly for several years, defects have been forgiven and worked around. Changes have been
made recently in preparation for the long promised release to the NodeBrain Open Source
Project, potentially introducing new defects that have yet to be discovered. So keep your
expectations low until a 1.0 release, and treat the prototype 0.x releases somewhat like a
concept demonstration.
See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Tutorial
NodeBrain Language Reference

Document Conventions

Sample code and input/output examples are displayed in a monospace font and enclosed in
a box. Bold text is used to bring the reader’s attention to specific portions of an example. In
the following example, the first and last line are associated with the host shell and the lines
in between are input or output unique to NodeBrain. The define command is highlighted,
indicating it is the focus of the example. Lines ending with a backslash \ indicate when a
command is continued on the next displayed line. This is supported by the language within
source files, but not for other methods of command input. If you copy an example of a
command displayed over multiple lines, you must enter it as a single line when used outside
the context of a source file.� �
$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";
> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\

e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NB000I Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$
 	

Table of Contents

1 Concepts . 1
1.1 Caboodles . 1
1.2 Subdirectories . 2
1.3 Kits . 6
1.4 Plans . 7
1.5 Component Replication . 8
1.6 Component Migration . 9
1.7 Component Naming Standard . 10

2 Installation . 13
2.1 GNU Source File . 13
2.2 RPM File . 13

3 Setup . 15
3.1 Create Account . 15
3.2 Create Directory . 15
3.3 Create Link . 15
3.4 Initialize Caboodle . 15
3.5 Create Caboodle Agent Identity . 16
3.6 Start Caboodle Agent . 16
3.7 Edit CaboodleMailAdmin Plan . 16
3.8 Issue Test Alarm . 16
3.9 Setup Example . 16

4 Commands . 19
4.1 Caboodle Links . 19

4.1.1 link . 19
4.1.2 unlink . 19
4.1.3 –caboodles . 19

4.2 Caboodle Development . 19
4.2.1 –kits . 20
4.2.2 use . 20

4.3 Component Migration . 20
4.3.1 export . 20
4.3.2 import . 20
4.3.3 upgrade . 21

4.4 Agent Management . 21
4.4.1 archive . 21
4.4.2 bounce . 21
4.4.3 check . 21
4.4.4 connect . 22

Caboodle NodeBrain Kit i

4.4.5 start . 22
4.4.6 stop . 22

4.5 Plan Management . 22
4.5.1 compile . 22
4.5.2 disable . 23
4.5.3 edit . 23
4.5.4 enable . 23
4.5.5 list . 23
4.5.6 remove . 23
4.5.7 rename . 24
4.5.8 setup . 24
4.5.9 show . 24
4.5.10 view . 24

4.6 Alarm Distribution . 24
4.6.1 Alarm . 25

5 Agents . 27
5.1 Caboodle Agent . 27

6 Adapters . 29
6.1 Plan Compilers . 29
6.2 Alarm Adapters . 30

7 Servants . 31

8 Plans . 33
8.1 Folders . 33
8.2 Model Plans . 33
8.3 Application Plans . 35
8.4 Plan Relationships . 35

9 Planner . 37
9.1 Certificate Authentication . 37
9.2 Authorization . 37
9.3 Apache . 38
9.4 Webster . 39

10 Plan Formats . 41
10.1 XML Document Format . 41
10.2 Line Editor Format . 42
10.3 HTML Document Format . 43

Index . 45

ii Caboodle NodeBrain Kit

Chapter 1: Concepts August 2014

1 Concepts

This chapter introduces basic concepts of the Caboodle NodeBrain Kit.

1.1 Caboodles

A NodeBrain caboodle is a directory that contains a NodeBrain application constructed
from one or more NodeBrain kits. Kit components are designed to be invoked with a
caboodle as the working directory, and reference all other components using a relative
path. This means a system may host multiple instances of a given NodeBrain application
in multiple caboodles without interference.

Suppose we have two caboodles, ‘/var/mycab1’ and ‘/var/mycab2’, representing either two
instances of application A, or an instance of application A and an instance of application
B.� �
/var/mycab1/

/var/mycab1/adapter/foobar.alarm

/var/mycab2/

/var/mycab2/adapter/foobar.alarm
 	
Components of a caboodle must never reference other components of the caboodle using fully
qualified names like ‘/var/mycab1/adapter/foobar.alarm’. Instead, they always assume
the working directory is the caboodle and make a relative reference to other components.
This makes them portable from one caboodle to another as illustrated by the following line
of a shell script that could run in either of the caboodles shown above.� �
echo "big problem" | adapter/foobar.alarm
 	

Caboodle NodeBrain Kit 1

August 2014 Chapter 1: Concepts

1.2 Subdirectories

Caboodles have a defined subdirectory structure upon which NodeBrain kits depend. Each
subdirectory has a file management category.

Management Description
Shared Directory containing components that may be synchronized over multiple

instances of a caboodle. Files in these directories may be placed under
version control and checked out to different users or servers. For a server
health monitoring application, as an example, each of several centrally
managed servers may have a caboodle that has identical files in the shared
management directories. An upgrade might be pushed through a common
version control repository or a tar file.

Instance Directory containing configuration components that make a caboodle
unique from other caboodles within the same application. For a server
health monitoring application, some configuration files must be unique
to each server or type of server, and therefor should reside in an instance
directory and should not be synchronized. Where possible, these compo-
nents should be generated by shared components based on a minimum
set of variables defined for each caboodle. Keep in mind that components
that can adapt to the requirements of a given instance at load time (e.g.
NodeBrain rules) can reside in a "shared" directory.

Dynamic Directory containing files that are updated during the normal operation
of a caboodle. Log files are an example. Unlike instance files that make a
caboodle behave in a unique way from others within the same application,
dynamic files are unique as the result of what happens in the caboodle.
The application must manage these files to avoid unconstrained growth.

2 Caboodle NodeBrain Kit

Chapter 1: Concepts August 2014

The file management category of each caboodle subdirectory is listed below with a short
description of how the subdirectory is used.

Subdirectory Category and Description
.nb Instance: A special directory for use by the NodeBrain interpreter, nb.

If a caboodle.nb file is found in this directory, NodeBrain sources it at
startup. Variables defined here may be used within shared rule files to
adapt to the unique requirements of a particular instance of an application
caboodle.
This is the only directory within a caboodle of which the NodeBrain

interpreter seems to have some awareness. In fact, the NodeBrain inter-
preter has no awareness of caboodles. It simply supports a .nb directory
in the working directory, and the caboodle concept depends on the ca-
boodle being the working directory when the interpeter and all other
components are invoked.
This directory should not be used by components other than NodeBrain

and node modules.
adapter Shared: Commands that adapt a NodeBrain application component to

specific interface requirements. For example, alarm adapters can be in-
cluded here to adapt alarms to a particular protocol or to an external
event management system interface.

agent Shared: NodeBrain agent scripts. It is best to manage agents using
an agent plan, in which case the agent script in this directory will be
generated for you by the agent compiler. This directory also has files
that identify the expected state of each agent.

bin Shared: Used for commands that do not fall into the categories for which
other directories are defined. See adapter, agent, exit, and servant
directories.

cache Dynamic: This directory has subdirectories that contain files used to
cache information for a limited duration to avoid more expensive lookup,
often where lookup may be relatively frequent. In cases where deleting
the data would impact more than just the performance hit of having
to perform a more expensive lookup, the var directory should be used
instead.

config Instance: This directoy may continue configuration files that are unique
to a given caboodle. However, this directory is deprecated and you should
use the etc directory for all new configuration files.

etc Instance: Configuration files unique to a given caboodle amongst multiple
caboodles synchronizing other components via a version control system.
Since it is not appropriate to version control this file in a repository shared
by other caboodles, it is sometimes helpful to manage these files using
plans with compilers that can be directed to produce files in this directory
based on symbolic variables and conditional compilation. See the .nb and
plan directories.

Caboodle NodeBrain Kit 3

August 2014 Chapter 1: Concepts

exit Shared: Commands that communicate a result via their exit code only.
Unlike servants, these commands are normally not designed for use with
NodeBrain. However, their exit code may identity the state of a mon-
itored element, making it easy to map the exit code into a NodeBrain
assertion.

kit Shared: Used to manage kit dependencies. This directory is reserved for
the nbkit command and should not be used by other kit components.

lib Shared: Libraries and Perl modules supporting other kit components.
As with all caboodle components, these components must be referenced
using a relative path to maitain portability of the caboodle.

log Dynamic: Log files for agents and other kit components. NodeBrain
agents normally manage the rotation, compression, and deletion of their
log files. When including other log files here, remember to provide the
necessary management to avoid filling up your file system. Consider using
the Caboodle agent to manage additional log files unless you have a more
convenient method.

message Dynamic: Used by the Message module and other modules using the
NodeBrain Message Log API. Do not use this directory for other
purposed.

msg Shared: Used by alarm adapters (e.g. adapter/mail.alarm) that lookup
and include a description of the alarm condition and response instruc-
tions. Subdirecties are defined for logical sets of alarms identified by
the first three or four characters of a message identifier. For example
a message CAB0001 would be described in the CAB subdirectory in a
file named CAB0001. Within the message set subdirectory (e.g. CAB)
additional files provide header, footer, and missing file text.

out Dynamic: Output files produced by commands issued by NodeBrain when
the output is not redirected. These files are retained for a few days for
troubleshooting.

pipe Dynamic: FIFO files for sending commands to Pipe nodes in NodeBrain
agents or for communicating between other caboodle components.

plan Shared: Contains a subdirectory for each plan, including the XML doc-
ument, plan relationship files, and normally any files generated from the
XML document by the associated compiler. In some cases the generated
files go to another directory (e.g. etc) that does not share the same
version control repository used by the plan directory.

queue Dynamic: This directory contains subdirectories for Peer module gueues.
This mechanism is deprecated and a future release of the Peer module will
switch to message logs. NodeBrain message logs provide a more efficient
method of sending events between agents and are currently supported by
the Message module. See the Message module manual for more info.

security Instance: Contains certificates and access lists.

4 Caboodle NodeBrain Kit

Chapter 1: Concepts August 2014

servant Shared: Contains servant commands that output NodeBrain commands
to stdout. Commands that do not conform to this standard belong in bin,
adapter, or exit. Servant commands may optionally accept commands
from NodeBrain on stdin and report error conditions on stderr.

setup Shared: Setup components. A kit may provide components in this direc-
tory for setting up an application.

socket Dynamic: Local domain socket files for communication between Node-
Brain processes using the Peer module. This directory may also be used
for communication between other caboodle components that use local
domain socket files.

user Shared: Application user files. This directory is for storing user prefer-
ences and other user related information. There is no recommendation
on how to organized user data in this directory.

var Dynamic: Data files used in the normal operation of a NodeBrain appli-
cation. Use the cache directory for temporary caching of data obtained
from a more authoritive source.

web Shared: Web content and scripts for web based tools. Individual tools
should use sub-directories. For example, the NodeBrain planner uses
the "planner" subdirectory and the Webster modules uses the "webster"
subdirectory by default.

Caboodle NodeBrain Kit 5

August 2014 Chapter 1: Concepts

1.3 Kits

A NodeBrain kit is a collection of components used to construct a NodeBrain application ca-
boodle. Kits are normally installed to ‘/usr/share/nbkit’ or ‘/usr/local/share/nbkit’
on development servers where application caboodles are constructed. Kits are not required
on test and production servers since their components migrate as part of the application
caboodle.� �
/usr/share/nbkit/kit-release.tar.gz

/usr/share/nbkit/caboodle-0.8.14.tar.gz
 	
An installed kit archive file is extracted into a caboodle when the a developer selects the kit
for use. Within a caboodle, kits are stored in the ‘kit/use’ subdirectory. These directories
have the same structure as the caboodle itself, but are only referenced for the purpose of
constructing the caboodle, they are not involved in application execution.

6 Caboodle NodeBrain Kit

Chapter 1: Concepts August 2014

1.4 Plans

A plan is an abstraction of a set of NodeBrain rules, managed as an XML document using
an XML schema that supports self-defining tables. The attributes of a plan have properties
that identify how they are used. Attributes may be used as columns of the table, or may
be used as single value plan options.

Caboodle NodeBrain Kit 7

August 2014 Chapter 1: Concepts

A plan editor is used to update a plan XML document. A plan compiler translates the XML
document, following a predefined scheme identified within the document, into NodeBrain
rules or configuration files for other components making up an application.

1.5 Component Replication

It is common in monitoring applications to have multiple servers that require the same
monitoring rules and supporting scripts. The NodeBrain agent is willing to talk to peers,
but the concept of a management server does not exist. In situations where it is necessary to
centrally manage multiple instances of an application caboodle, there are two basic models
to consider.

The first method makes use of a version control repository, where each instance of the
application caboodle has a checked out copy of the components you want to replicate. A
master caboodle is used for applying changes via a commit and each replica performs an
update to get the changes. The replicas need only read access to the repository, while the

8 Caboodle NodeBrain Kit

Chapter 1: Concepts August 2014

master needs update permission. This approach can be combined with a web based plan
editor for relatively quick distribution of rule changes.

The second method uses a simple tarball to transport updates. This approach is fine when
changes are less frequent, and may be required when there is an administrative air gap
that rules out the repository option. The export and import functions are provided by the
Caboodle Kit to limit replication to components based on the management category of each
directory, and to give plans special attention.

1.6 Component Migration

The tarball method of replication may be used for component migration through environ-
ments, perhaps combined with the repository method for replication within an environment.
The export and import operations take special care in handling plans. Plan permissions are
managed as separate XML documents called control plans, that only import when new. So
permissions to modify plans do not replicate via the tarball method, even when the associ-
ated plan document does. In addition, only new plans and plans not previously modified in

Caboodle NodeBrain Kit 9

August 2014 Chapter 1: Concepts

the target system will import. This makes it possible to elect to manage a plan in a given
environment and not to accept updates via migration. This does not prevent migration
further down stream, since this is a down stream decision. Plans that are not imported
are actually temporarily stored in a kit/plan directory where they are available for manual
analysis.

1.7 Component Naming Standard

To avoid name collisions in caboodle subdirectories, components and lower level subdirec-
tory names are expected to be in CamelCase, starting with the name of the kit or application
that provides the component. For example, components provided by the System NodeBrain
Kit start with "System". Components provided by the Caboodle kit violate this standard
a bit, but in a way that will not collide with kits following the standard. The caboodle
kit provides components associated witht the Caboodle agent, which start with "Caboo-
dle". A more foundational set of nbkit components start with an underscore (" "), "nbkit",
"NBK", or names starting with lower case. You should not emulate these deviations from

10 Caboodle NodeBrain Kit

Chapter 1: Concepts August 2014

the standard. Stick with CamelCase names starting with a short identifier of your kit or
application.

Caboodle NodeBrain Kit 11

Chapter 2: Installation August 2014

2 Installation

The Caboodle Kit is released as a GNU style source distribution file, and an architecture
independent RPM file, both of which can be downloaded at http://nodebrain.org, with
SourceForge.net providing the download service.

2.1 GNU Source File

When installing from a GNU source distribution release file, follow these steps, adjusting
the release number as needed to match the file you download.� �
tar -xf nbkit-caboodle-0.8.14.tar.gz
cd nbkit-caboodle-0.8.14
./configure
make
make check
make install
 	
When using this method, the kit is installed to ‘/usr/local/share/nbkit/caboodle-0.8.14.tar.gz’.
You can override this using ./configure --prefix=/home/foo, which would cause the kit
to be installed as ‘/home/foo/share/nbkit/caboodle-0.8.14.tar.gz’.
If on a Linux platform that supports RPM files, you may issue the following command to
create a source RPM file and a noarch RPM file to enable native package management.� �
make rpm
 	
2.2 RPM File

When installing from an RPM file, use the following rpm command. The RPM is not
architecture dependent because it contains no compiled code, only Perl and NodeBrain
scripts, and a few web pages and associated image files.� �
rpm --install nbkit-caboodle-0.8.14-1.noarch.rpm
 	
When using this method, the kit is installed to ‘/usr/share/nbkit/caboodle-0.8.14.tar.gz’.

Caboodle NodeBrain Kit 13

Chapter 3: Setup August 2014

3 Setup

This chapter walks the reader through the initial caboodle setup process as performed on a
development system. After describing the individual steps, a complete example is provided
in the last section of this chapter. The nbkit commands used in this chapter are explained
in more detail in the next chapter, Commands.

3.1 Create Account

A caboodle can operate under any account on a system, although it is often best to run a
NodeBrain application using an application account. When using an application account,
an administrator with root would create the application account first.� �
useradd user
 	
You can skip this step if creating a caboodle to run under your personal account.

3.2 Create Directory

Create a directory you will use as your caboodle. If creating an application caboodle as
root, also assign ownership to the application account. Otherwise, you can skip the chown
command.� �
mkdir directory

chown user:user directory
 	
3.3 Create Link

Give your caboodle a name to use with the nbkit command.� �
$ nbkit caboodle link directory
 	
3.4 Initialize Caboodle

Specify the kit you want to use for the caboodle. There may be multiple versions
of the Caboodle NodeBrain Kit installed on the server in various locations, so
you need to specify the full path. Normally NodeBrain kits will be installed at
‘/usr/share/nbkit/’ or ‘/usr/local/share/nbkit/’. For example, a normal install
of release 0.8.14 of the Caboodle NodeBrain Kit using an RPM will install it as
‘/usr/share/nbkit/caboodle-0.8.14.tar.gz’.� �
$ nbkit caboodle use kit
 	
Caboodle NodeBrain Kit 15

August 2014 Chapter 3: Setup

3.5 Create Caboodle Agent Identity

The Caboodle agent runs with a NodeBrain identity, which must be established before
starting the agent. Issue these commands.� �
$ nb
> peer.identify Caboodle
> quit
$ echo "declare Caboodle identity;" >> ~/.nb/user.nb
 	
3.6 Start Caboodle Agent

Use the following command to start the Caboodle agent. This agent is responsible for alarm
distribution and removing some temporary files from the caboodle.� �
$ nbkit caboodle start Caboodle
 	
3.7 Edit CaboodleMailAdmin Plan

The CaboodleMailAdmin plan subscribes to all alarms initially, and sends email to the local
root account. If that is not appropriate for the caboodle you are setting up, change the
administrator email address as follows.� �
$ nbkit caboodle edit CaboodleMailAdmin
:%s/root@localhost/email-address/g
:wq
$
 	
3.8 Issue Test Alarm

To verify that alarms are properly sent to the configured email address, issue a test alarm.� �
$ nbkit caboodle alarm text="CAB0000 This is only a test"
 	
3.9 Setup Example

All the steps described above are illustrated by an example here. This example assumes an
application account and caboodle is being created by root.

16 Caboodle NodeBrain Kit

Chapter 3: Setup August 2014

� �
useradd cabby
mkdir /var/cabby
chown cabby:cabby /var/cabby
su cabby
$ nbkit cabby link /var/cabby
$ nbkit cabby use /usr/share/nbkit/caboodle-0.8.14.tar.gz
$ nb
> peer.identify Caboodle
> quit
$ echo "declare Caboodle identity;" >> ~/.nb/user.nb
$ nbkit cabby start Caboodle
$ nbkit cabby edit CaboodleMailAdmin
:%s/root@localhost/john.p.doe@acme.com/g
:wq
$ nbkit cabby alarm text="CAB0000 This is only a test"
 	
Here’s another example, assuming a user is setting up a caboodle on an existing account
that already has other caboodles.� �
$ mkdir ~/cabby
$ nbkit cabby link $HOME/cabby
$ nbkit cabby use /usr/share/nbkit/caboodle-0.8.14.tar.gz
$ nbkit cabby start Caboodle
$ nbkit cabby edit CaboodleMailAdmin
:%s/root@localhost/john.p.doe@acme.com/g
:wq
$ nbkit cabby alarm text="CAB0000 This is only a test"
 	

Caboodle NodeBrain Kit 17

Chapter 4: Commands August 2014

4 Commands

The nbkit command, an alias for the NodeBrain interpreter nb, is used to launch Perl
scripts that reside in the ‘bin’ subdirectory of a caboodle. Parameters to nbkit enable
operations on a caboodle and individual agents and plans defined within the caboodle. The
general syntax is as follows.� �
$ nbkit caboodle verb arguments
 	
In addition to this command line interface (CLI), the Caboodle NodeBrain Kit provides a
web interface supporting many of the operations described in this section.

4.1 Caboodle Links

Caboodle links are used to associate a caboodle directory with a short name for use in
nbkit commands. The commands in this section are used to manage these links, which are
actually symbolic links within the user’s ‘~/.nb/caboodle/’ directory.

4.1.1 link

The caboodle is given a short name nbkit with a verb of link. In the following example
the name cab is defined as a link to the directory created above. This definition applies
only to the account that performs the link command.� �
$ nbkit cab link $HOME/foobar
 	
4.1.2 unlink

If at any time you decide to abandon a caboodle, use the unlink command.� �
$ nbkit cab unlink
 	
4.1.3 –caboodles

All caboodles currently defined for your account can be displayed with either of the following
commands.� �
$ nbkit -c
$ nbkit --caboodles
 	
4.2 Caboodle Development

On a development system where the Caboodle NodeBrain Kit is installed, you start a
caboodle by creating an empty directory and giving it a short single word name using the
link command. In the following example, the caboodle directory is created as ‘foobar’ in
the user’s home directory, but it can be anywhere.

Caboodle NodeBrain Kit 19

August 2014 Chapter 4: Commands

� �
$ cd ~
$ mkdir foobar
$ nbkit cab link $HOME/foobar
 	
4.2.1 –kits

To list installed NodeBrain kits, use one of the following commands.� �
$ nbkit -k
$ nbkit --kits
 	
4.2.2 use

Now it is time to populate the caboodle with components provided by NodeBrain kits,
starting with the Caboodle Kit. The following example assumes release 0.8.14, but you will
adjust the release number based on the installed kits available. Because the Caboodle Kit
provides the logic for most nbkit verbs, including use,� �
$ nbkit caboodle use kit-archive

$ nbkit cab use /usr/share/nbkit/caboodle-0.8.14.tar.gz
 	
4.3 Component Migration

The export, import, and upgrade commands may be used to migrate caboodle components.

4.3.1 export

The export command is used to create an archive of caboodle components in the "shared"
management category. This is done to create a backup, or to enable transport to another
caboodle, perhaps on another server. Log files and other files considered to be caboodle
specific and of no value to similar caboodles are not exported.� �
$ nbkit caboodle export caboodle-archive

$ nbkit cab export /tmp/foobar-1.0.9.tar.gz
 	
4.3.2 import

Use the import command to update a caboodle from an archive file produced by the export
command. This command will add new "shared" files found on the archive, and will not
disturb files in the caboodle that are not included in the archive. An import takes additional
care in handling plan files, since they may be uniquely managed in an environment. A plan
that has local modifications is not updated from the archive, a message is displayed, and
the archived copy is placed in a kit/plan/plan directory for manual analysis if necessary.
This special handling is not applied to other types of components, only plans.

20 Caboodle NodeBrain Kit

Chapter 4: Commands August 2014

� �
$ nbkit caboodle import archive_file

$ nbkit cab2 import /tmp/foobar-1.0.9.tar.gz
 	
4.3.3 upgrade

Use the upgrade command to update a caboodle from an archive file produced by the
export command, including the removal of "shared" files not found in the archive. This
command is used to manage copies of a caboodle, without allowing for local modifications.� �
$ nbkit caboodle upgrade archive_file

$ nbkit cab2 upgrade /tmp/foobar-1.0.9.tar.gz
 	
4.4 Agent Management

Commands in this section operate on NodeBrain agents. An agent is a NodeBrain script
that runs as a daemon.

4.4.1 archive

The NodeBrain interpreter running in agent mode responds to an archive command
by renaming the current log file by inserting a time stamp, and then starting a new
log file under the original name. For example, an agent named "Foobar" would nor-
mally have a log file named ‘log/Foobar.log’. An archive command renames it to
‘log/Foobar.YYYYMMDDHHMMSS.log’, where YYYYMMDDHHMMSS is year, month, day,
hour, minute, and second at the time of the command.

An agent normally has a rule that issues an archive command daily. However, the archive
verb of the nbkit command may be used to send an archive command to an agent at other
times. This may be useful when troubleshooting if the log file has become too large to view.� �
$ nbkit caboodle archive agent

$ nbkit cab archive Caboodle
 	
4.4.2 bounce

The bounce command is used to stop and restart an agent. This may be done to reload rules
after modification. If the current expected state is set to "up", just like a start command.� �
$ nbkit caboodle bounce agent

$ nbkit cab bounce Caboodle
 	
4.4.3 check

The check command compares the current state of an agent with the expected state. If
the agent is "down" and expected "up", it is started. If the agent is "up" and expected
"down", it is stopped.

Caboodle NodeBrain Kit 21

August 2014 Chapter 4: Commands

� �
$ nbkit caboodle check agent

$ nbkit cab check Caboodle
 	
4.4.4 connect

The connect command is used to invoke the NodeBrain interpreter in interactive mode and
prompt for commands to be issued to an agent. This requires that the agent have a Peer
server node named the same as the agent. This is normal for agents generated by agent
plans.� �
$ nbkit caboodle connect agent

$ nbkit cab connect Caboodle
 	
4.4.5 start

The start command is used to start an agent that is currently "down" and set the expected
state to "up".� �
$ nbkit caboodle start agent

$ nbkit cab start Caboodle
 	
4.4.6 stop

The stop command is used to stop an agent that is currently "up" and set the expected
state to "down".� �
$ nbkit caboodle stop agent

$ nbkit cab stop Caboodle
 	
4.5 Plan Management

Commands in this section operate on NodeBrain plans. A plan is an XML document
that normally translates into a set of NodeBrain rules or a configuration file based on a
model. Compilers are provided to perform this translation. Each plan has a "scheme" that
determines which compiler is used.

Most operations performed on plans by commands in this section may also be performed
by the NodeBrain Planner web interface.

4.5.1 compile

The compile command is used to convert a plan XML document into a target format, often
NodeBrain rules.� �
$ nbkit caboodle compile plan

$ nbkit cab compile Caboodle
 	
22 Caboodle NodeBrain Kit

Chapter 4: Commands August 2014

4.5.2 disable

Use the disable command to disable a plan, or disable a relationship between two plans.� �
$ nbkit caboodle disable plan

$ nbkit cab disable CaboodleMailAdmin
 	� �
$ nbkit caboodle disable plan.other.relationship
$ nbkit cab disable CaboodleMailAdmin.CabaoodleNotify.parent
 	
4.5.3 edit

The edit command is used to modify a plan. The XML document is first converted into a
temporary file with a less complex format and vi is invoked to edit the file. After exiting
vi, the file is converted back into XML document format. The XML document is then
converted into a target format by the associated compiler.� �
$ nbkit caboodle edit plan

$ nbkit cab edit Caboodle
 	
4.5.4 enable

The enable command is used to enable a plan, or enable a relationship between two plans.� �
$ nbkit caboodle enable plan

$ nbkit cab enable CaboodleMailAdmin
 	� �
$ nbkit caboodle enable plan.other.relationship
$ nbkit cab enable CaboodleMailAdmin.CaboodleNotify.parent
 	
4.5.5 list

Use list to display a list of configured plans.� �
$ nbkit caboodle list
$ nbkit cab list
 	
4.5.6 remove

The remove command is used to remove a plan for a caboodle.� �
$ nbkit caboodle remove plan

$ nbkit cab remove Foobar
 	
Caboodle NodeBrain Kit 23

August 2014 Chapter 4: Commands

4.5.7 rename

The rename command is used to change the name of an existing plan.� �
$ nbkit caboodle compile plan.newname
$ nbkit cab rename Caboodle.Cab
 	
4.5.8 setup

The setup command may be used to display a list of plans available for setting up in the
caboodle.� �
$ nbkit caboodle setup
$ nbkit cab setup
 	
This command may also be used to invoke the assisted setup script for a plan.� �
$ nbkit caboodle setup plan

$ nbkit cab setup Foobar
 	
4.5.9 show

The show command displays information about a plan, include the scheme title, and rela-
tionships to other plans.� �
$ nbkit caboodle show plan

$ nbkit cab show Caboodle
 	
4.5.10 view

Use view to browse a plan in configuration file format.� �
$ nbkit caboodle view plan

$ nbkit cab view Caboodle
 	� �

 	
4.6 Alarm Distribution

Alarm distribution is handled by the Caboodle agent, and required one or more alarm
subscription rules. The CaboodleMailAdmin plan is an example of an alarm subscription.
This plan can be modified to send email to your email address using the following command.
By default the email address is root@localhost. Change it to your email address.

24 Caboodle NodeBrain Kit

Chapter 4: Commands August 2014

� �
$ nbkit caboodle edit CaboodleMailAdmin
 	
When you save the change, the Caboodle agent should automatically stop and restart,
unless it is in an expected down state. Before experimenting with the alarm command in
the next section, make sure the Caboodle agent is up by issuing a bounce command.� �
$ nbkit caboodle bounce Caboodle
 	
4.6.1 Alarm

The alarm command sends a NodeBrain alert to the alarm node of the Caboodle agent
supporting the specified caboodle.� �
$ nbkit caboodle alarm attribute="value" [...]
 	
Multiple optional alarm attributes may be specified. Some have default values when not
specified. All alarm attributes may be referenced by an alarm subscription, which is required
for actual distribution of the alarm.

Attribute Description

appl Specify the name of the application to which the alarm applies.

group Specify a value that categories the alarm; e.g. "OS", "Database",
"Web". The group attribute is intented to route alarms to a unique
group of subject experts. This is unlike the route attributes which
may be used to provide visibility to various inter- ested recipients.

node Specify the hostname associated with the alarm. By default, the local
hostname is used.

route Specify a comma seperated list of routing codes for alarm subscrip-
tions. The codes are strings that have meaning within a given appli-
cation. For example, if the caboodle is a security event monitoring
application, a value of "SOC" might be used to indicate the alarm is
intented for the Security Operations Center. Multiple codes may be
entered; e.g. "SOC,NOC".

severity Specify a level of severity for the alarm. Typical values are "critical",
"major", "minor", "warning" and "info", although you may select
alternate values that work bet- ter in the context of your application.

text Specify message text that describes the alarm condition; e.g. "Roof
flew off the barn". You may include a message identifier of the form
AAANNNN at the start of the text; e.g. "PWS0125 Roof flew off the
barn".

Caboodle NodeBrain Kit 25

Chapter 5: Agents August 2014

5 Agents

This section describes agents provided by this kit. Although there is only one agent for this
kit, and not much to say about it, the structure of this document is intended as an example
for other kits or applications, some of which will have several agents.

5.1 Caboodle Agent

This kit provides an agent called Caboodle, which is responsible for alarm distribution,
and may also optionally host web tools like the NodeBrain Planner described later in this
document.

Caboodle NodeBrain Kit 27

Chapter 6: Adapters August 2014

6 Adapters

Adapers are small scripts that adapt NodeBrain to an application environment based on a
model of interaction not defined by NodeBrain, but taking advantage of more general types
of interaction defined by NodeBrain. In other words, adapters can fit into models defined
by NodeBrain Kits, about which NodeBrain has no awareness.

The Caboodle NodeBrain Kit provides a small set of adapters to get started. Other kits
can provide additional adapters. You are advised to think of your application as a kit, even
if you don’t publish it, and name components using CamelCase, starting with a single word
identifier for your application or kit. This is important because caboodle components are
stored in a flat name space where collisions would be likely without following this naming
standard.

Adapters are stored in the ‘adapter’ subdirectory of a caboodle and have extensions that
identify an adapter type.

6.1 Plan Compilers

Each plan is associated with a scheme, which is a model for converting a table represented
as XML, into a set of NodeBrain rules, or a configuration file for another tool. Compilers are
adaters that perform this conversion for a given scheme, or you might say they implement
a scheme.

These components are named scheme.compiler. The quickest path to understanding a
compiler is to study a plan using the scheme. For example, the Caboodle plan uses the
Agent scheme. Looking at both the plan XML document and the generated ‘*.nb’ file

reveals the transformation. If you are comfortable with Perl, a peek at the compiler itself
will clarify further.� �
_Agent.compiler
_Alarm.compiler
_Alarmer.compiler
_Block.compiler
_Config.compiler
_Distribution.compiler
_List.compiler
_Morph.compiler
_Node.compiler
_Package.compiler
_Permissions.compiler
_Policy.compiler
_Rule.compiler
_Subscription.compiler
_Table.compiler
_Translator.compiler
 	
Caboodle NodeBrain Kit 29

August 2014 Chapter 6: Adapters

6.2 Alarm Adapters

Alarm adapters are used to match alarms to specific methods of delivery and enable a variety
of formats for a given delivery method. Although most applications need to send alarms
via a variety of the methods, such as SMTP, SNMP traps, syslog, and command interfaces
to event management or ticketing systems, the initial release of this kit only provides an
adapter for mail.� �
_Mail.alarm
_Mail.form
 	
Plans that use the Subscription compiler allow for the specification of a form and alarm
adapter. By addding more form and alarm adapters you increase the options for alarm
subscriptions.

30 Caboodle NodeBrain Kit

Chapter 7: Servants August 2014

7 Servants

Servants connect NodeBrain rules to an application environment using a method of interac-
tion prescribed by, and fully support by, NodeBrain. This sets them apart from adapters,
which interact with NodeBrain indirectly, based on a model unknown to NodeBrain.
Although servants are critical to many NodeBrain applications, the initial release of the
Caboodle NodeBrain Kit provides no servants. See the System NodeBrain Kit for examples.

Caboodle NodeBrain Kit 31

Chapter 8: Plans August 2014

8 Plans

Plans are XML documents that represent a set of NodeBrain rules, or other configuration
files, as a table with options. This kit provides two sets of plans. The first set have names
starting with an undercore (" ") and provide an initial folder structure and plans used
as models for creating new plans. The second set have names starting with "Caboodle"
and implement the actual application provided by this kit. Other kits and applications are
expected to name both model and application plans in CamelCase starting with the name
of the kit or application. The use of (" ") is unique to the Caboodle Kit.

8.1 Folders

Folder are provided to aid in navigation when managing plans using the NodeBrain Planner.

Plan Purpose
Home Top level folder.
Admin Plan of interest primarily to application administrators.
Admin/ Model Plans used as models for new plans. Any plan can server as a

starting point for creating a new plan. However, plans in the
Model folder typically have no other purpose. These plans are

included in a pull down menu of model plans when creating a
new plan using the NodeBrain Planner web interface.

Admin/ Schema Examples of supported XML schemas (Folder and Table).
Admin/ Scheme Model for each supported scheme for which a compiler is pro-

vided. This is a proper subset of the plans in the Model folder.
Admin/CaboodleKit Enables navigation to all application plans provided by this kit.
Alarms Plans that generate an alarm identified by the plan name. This

is intended as a single place to find all alarms, although alarms
will be found under other folders and plans as well.

Planner Plans of interest to users called "planners", who are responsible
for updating the content of plans, but not the design of plans.

Subscriptions Alarm subscription plans.

8.2 Model Plans

Plans in this section are used as a model for creating new plans. They are children of the
Model folder.

Plan Purpose
Agent Create an agent. This plan is like a Block plan, but volunteers

some addition rules appropriate for all agents.
Alarm Create an alarm. Works with the CaboodleAlarmer plan to

generate a flood protected alarms.
Alarmist Create a mulitple condition alarm. Works with the Ca-

boodleAlarmer plan to generate a flood protected alarm cover-
ing multiple conditions, each identified by a signature name.

Caboodle NodeBrain Kit 33

August 2014 Chapter 8: Plans

Block Create a set of rules organized into blocks that can be enabled or
disabled. These rules are represented in NodeBrain rule syntax.

Config Create a configuration file for a non-NodeBrain application.
This is like a Block plan, in that it has blocks that can be
enabled and disabled, but it also supports block conditions in-
terpreted by NodeBrain for selective inclusion of blocks in the
generated file. For NodeBrain rules, the Block plan should be
used instead, because the conditions can be specified within the
NodeBrain syntax and applied at agent startup instead of plan
compilation time.

Folder Create a new folder plan. Plans are stored in a flat namespace,
unlike a multi-level directory system. All plans may have mul-
tiple parent plans and multiple child plans. This means every
plan is effectively a folder of child plans, but a Folder plan has
no other purpose than to provide access to a set of child plans.

List Create a list of assertions for a node using a module that accepts
assertions of tuples (e.g. Tree, and Cache).

Macro Create a macro for use by other plans.
Morph Create a non-NodeBrain application configuration file using

NodeBrain conditions and symbolic substitution. These plans
are used similar to Config plans, but where symbolic substitu-
tion is required in addition to conditional use of blocks.

Node Create a node.
Package Create a package of plans with control of source parameters

and the order children are sourced.
Policy Create a set of rules.
Rule Create a single rule.
Subscription Create an alarm subscription.
Table Create a plan using the table schema without generating code.

A table plan may be used as a configuration file to an applica-
tion component that accesses the XML document directly. A
table plan can also be used to prepare a model plan for a new
scheme. After formulating the model plan a compiler can be
written and the plan scheme can be changed to use the new
compiler.

Translator Create a translator node and translator. The translator may
be used by other nodes as well.

TypeList Create a list of single attribute turple assertions (see List
above) where the attibute is called "Type". This is a simple
example of a List plan, provided because use of List requires
modification of the plan table attributes to adapt to your re-
quirement. The TypeList plan is an example of a very minor
modification.

34 Caboodle NodeBrain Kit

Chapter 8: Plans August 2014

8.3 Application Plans

Plans in this section provide a minimal application that can be used to manage alarm
distribution and an optional web interface for administrators.

Plan Purpose
Caboodle Agent responsible for alarm distribution and hosting of an op-

tion web server for tools
CaboodleAccess User permissions for access to the optional NodeBrain Planner
CaboodleAlarm Alarm distribution plan used by Caboodle agent to implement

alarm subscriptions
CaboodleAlarmAttributes Alarm attributes managed separately to symplify replacing

CaboodleAlarm
CaboodleAlarmDelivery Alarm delivery macro used by alarm subscriptions
CaboodleAlarmer Alarm handler with flood protection
CaboodleConfig Configuration of web heading for the optional NodeBrain

Planner
CaboodleFilter Access filter for the NodeBrain Webster node module when used

as a web server
CaboodleMailAdmin Alarm subscription for caboodle administrator
CaboodleProfile Optional plan for managing a caboodle profile

(.nb/caboodle.nb)

8.4 Plan Relationships

The figure below shows how plans can be organized based on their scheme. An agent plan is
the top level plan for an agent, while a batch or interactive script would start with a block,
package, or node plan. A node plan provides a single node, while a block or package plan
can provide multiple nodes. Children of these types of plans are listed below them. List and
translator plans are often referenced by a node directly instead of being sourced in as a child
plan. Alarm and alarmist plans provide a method of generating alarms to be handled by
CaboodleAlarmer which provides flood control and an interface to the Caboodle agent for
distribution based on subscriptions. Morph and config plans normally stand alone because
they generate configuration files for component other than NodeBrain. Macro plans are
often managed as a resource loaded by the %use directive, so it is shown standing alone at

Caboodle NodeBrain Kit 35

August 2014 Chapter 8: Plans

at the top level. However, macros may also be defined within a lower level context, and
may be a child to another plan.

36 Caboodle NodeBrain Kit

Chapter 9: Planner August 2014

9 Planner

The NodeBrain Planner is a web interface for editing plan documents in a caboodle, as a
way of managing NodeBrain rules. This interface is provided by a Perl CGI script that you
can use with an Apache web server, or with the Webster module provided with NodeBrain.
Depending on your application, it may be best only to use this interface on a develop-
ment platform. However, some applications require dynamic rule changes in a production
environment, in which case you may elect to use this inferface in production as well as
development.
Use of the NodeBrain Planner is optional. You may elect to manage a caboodle using the
nbkit command at a shell prompt, or use the Planner and nbkit command in combination.

9.1 Certificate Authentication

Because the NodeBrain Planner enables control of a caboodle and the account running the
Planner, it is important to authenticate administrators using the Planner and set appro-
priate permissions. Authentication is performed by the web server and web browser using
X509 certificates and mutual verfication.
Both client and server require a certificate, private key, and at least one trusted cerfiicate
that has signed the certificate of the peer. On the server side, these files can be stored in
the ‘security’ subdirectory of your caboodle as follows.� �
security/ServerCertificate.pem
security/ServerKey.pem
security/TrustedCertificates.pem
 	
You can obtain the certificates from a trusted certificate authority or create your own using
openssl. The is plenty of information on the web to reference. If you have a copy of the
NodeBrain source package, you can also start with the Webster NodeBrain Module tutorial.

9.2 Authorization

The CaboodleAccess plan is used to control Planner permissions. To make yourself an
administrator, edit the plan by issuing the following edit command.� �
$ nbkit caboodle edit CaboodleAccess
 	
This will drop you into vi on the plan, after first converting it from XML format to a more
vi friendly format called "cfg". Once you get the web interface working, you will be able
to use it for subsequent changes to the CaboodleAccess plan.
In "cfg" format, table rows are expressed in blocks starting with "]" in column one, and
attribute names starting in column two, followed by a colon, ":", and a value the first two
blocks shown below, are the last two blocks of the file when you first edit it. Copy the first
of these to make a third as the bottom of the file as illustrated. The UserId must match
the common name (CN) in your browser certificate, and the Role must be "admin" to give
you full control of all the plans in the caboodle.

Caboodle NodeBrain Kit 37

August 2014 Chapter 9: Planner

� �
]
UserId: admin
Role: admin
Name: Administrator
Email: root@localhost
Phone: Unknown
Department: Unknown
Location: Unknown
]
UserId: guest
Role: guest
Name: Guest
Email: root@localhost
Phone: Unknown
Department: Unknown
Location: Unknown
]
UserId: certificate-CN
Role: admin
Name: your-name
Email: your-email-address
Phone: Unknown
Department: Unknown
Location: Unknown
 	

When you :wq out of vi reply y when asked if you want to compile the plan.

9.3 Apache

If you are familiar with the Apache web server, you may prefer to run the NodeBrain Planner
under Apache. An outline for creating a virtual host for a caboodle is shown below. Replace
Caboodle with your caboodle directory. You may use a different port number, and may place
the SSL certificate and key files in a different location under different names. The important
elements of this outline to follow are the DocumentRoot, the Include to control access, and
the options related to CGI scripts.

38 Caboodle NodeBrain Kit

Chapter 9: Planner August 2014

� �
Listen 443
<VirtualHost *:443>
DocumentRoot "Caboodle/web"
...
SSLEngine on
SSLCertificateFile Caboodle/security/ServerCertificate.pem
SSLCertificateKeyFile Caboodle/security/ServerKey.pem
SSLCertificateChainFile Caboodle/security/TrustedCertificates.pem
...
<Location />
SSLRequireSSL
Include Caboodle/plan/CaboodleAccess/CaboodleAccess-apache.txt
</Location>
...
<Files ~ "\.cgi$">

SSLOptions +StdEnvVars
</Files>
...
<Directory "Caboodle/web">

Options ExecCGI ...
...

</Directory>
...
</VirtualHost>
 	
The NodeBrain Planner must run as the user owning the caboodle. This means you must
run Apache under this user, or use the suexec feature of Apache to switch users. This means
you will use the User global directive, or the SuexecUserGroup directive in the virtual host.

Refer to Apache HTTPD Server documentation online for additional information on con-
figuring virtual servers using SSL, CGI scripts, and suexec.

9.4 Webster

The Webster NodeBrain Module may be used as the web server hosting the NodeBrain
Planner. Be careful when using this option, because it introduces some remote control
features only appropriate for administrators of the caboodle. If you want to make the
Planner available to users you don’t want to also have administrative rights to the caboodle
and the application account, you should use the Apache option for those users.

To use this option, create a file called ‘AccessList.conf’ in the ‘security’ subdirectory
of your caboodle. The file needs only one line starting with "a," followed by the common
name (CN) in your browser certificate, followed by a semi-colon, and optionally a comment
if the CN is not self documenting. You may add additional lines if you want to have multiple
administrators.� �
a,CN; # comment
 	
Caboodle NodeBrain Kit 39

August 2014 Chapter 9: Planner

Next, enable the webster node in the Caboodle agent. This is done using the nbkit edit
command.� �
$ nbkit caboodle edit Caboodle
 	
You will be dropped into vi and the bottom of the file will look like the following block. A
disabled block starts with "]!". To enable the block, remove the "!". If port 49443 is used
on your server, you can change to an unused port.� �
]!
Code{
Webster - Tiny Web Server
define webster node webster;
webster. define uri cell "https://0.0.0.0:49443";
webster. define Config cell "etc/CaboodleConfig.conf";
webster. define Filter cell "plan/CaboodleFilter/CaboodleFilter.nb";
}
 	
When you :wq out of vi, respond y when asked if you want to compile the plan. Your
Caboodle agent should automatically start, or restart if it was already running.
Now just point your browser to https://hostname:49443/planner/Planner.cgi, using your
alternate port if you changed it. If you have more than one certificate installed in your
browser, select the one that will be trusted by your server. This means, the one with the
common name (CN) specified in your ‘security/AccessList.conf’ file and signed by the
private key of a trusted certificate in your ‘security/TrustedCertificates.pem’ file.
The additional functionality provided by this option may be accessed via the [Webster] item
in the upper right menu bar. Use the upper left menu bar for [Bookmarks], [Directory],
and [Command] functions. Return to the Planner by selecting [Planner] in the upper right
menu bar.
The [Command] option enables remote execution of NodeBrain commands in your Caboodle
agent. However, a firewall restricts the commands you can issue via this interface. You
manage this firewall using the CaboodleFilter plan.

40 Caboodle NodeBrain Kit

Chapter 10: Plan Formats August 2014

10 Plan Formats

A plan is normalled stored as an XML document, but may also be represented temporarily in
a line editor format, or Planner web display format. This chapter introduces these formats.
In later editions, more detail will be provided. For now, the formats are illustrated by
example.

10.1 XML Document Format

The XML schema for a plan document is relatively simple as shown below using the Ca-
boodleMailAdmin plan as an example.� �
<?xml version=’1.0’?>

<plan scheme=’_Subscription’ schema=’table’ version=’0.8’>

<description name=’CaboodleMailAdmin’ title=’Administrator Alarm Subscription’>

This plan specifies alarm subscription conditions.

</description>

<guide>

</guide>

<table>

<attributes>

<attribute id=’1’ time=’1362271999’ user=’admin’ name=’address’

title=’Email address of subscriber’ type=’text’ for=’opt’>root@localhost </attribute>

<attribute id=’2’ time=’1362271999’ user=’admin’ name=’method’

title=’Type of alarm adapter’ for=’opt’>_Mail</attribute>

<attribute id=’3’ time=’1362271999’ user=’admin’ name=’form’

title=’Adapter to format alarm content’ for=’opt’>_Mail</attribute>

<attribute id=’4’ time=’1362271999’ user=’admin’ name=’term’

title=’Name associated with condition’/>

<attribute id=’5’ time=’1362271999’ user=’admin’ name=’expression’

title=’NodeBrain cell expression based on alarm attributes’ type=’cell’/>

</attributes>

<rows>

<row id=’1’ time=’1362271999’ user=’admin’><cell id=’4’>all</cell><cell id=’5’>1</cell></row>

</rows>

</table>

<history>

<change id=’1’ time=’1362271999’ user=’admin’ update=’Full plan update’ reason=’’/>

</history>

</plan>
 	

Caboodle NodeBrain Kit 41

August 2014 Chapter 10: Plan Formats

10.2 Line Editor Format

The line editor format is designed to be easy to edit with a line editor. Column one of
each line is special in this format. Compare the following representation of the Caboodle-
MailAdmin plan to the XML representation above. Change history information is not
currently included in this format, and will be dropped when a plan is converted back to
XML document format.� �
.scheme: _Subscription

.title: Administrator Alarm Subscription

.purpose{

This plan specifies alarm subscription conditions.

}

.guide{

}

)table

.address: root@localhost

title: Email address of subscriber

type: text

for: opt

.method: _Mail

title: Type of alarm adapter

for: opt

.form: _Mail

title: Adapter to format alarm content

for: opt

.term

title: Name associated with condition

.expression

title: NodeBrain cell expression based on alarm attributes

type: cell

>

term:

expression:

]

term: all

expression: 1
 	

42 Caboodle NodeBrain Kit

Chapter 10: Plan Formats August 2014

10.3 HTML Document Format

Plans are converted from XML to HTML format by the Planner. For authorized users,
additional HTML elements are included to enable plan editing. For more information on
this format, consult the online help provided by the Planner.
The HTML format uses icons created by Mark James at http://www.famfamfam.com.

Caboodle NodeBrain Kit 43

Index August 2014

Caboodle NodeBrain Kit 45

August 2014 Index

Index

A
adapters . 29
agent management . 21
agents . 27
alarm . 25
alarm adapters . 30
alarm distribution . 24
Apache . 38
application plans . 35
archive . 21
authorization . 37

B
bounce . 21

C
caboodle agent . 27
caboodle development . 19
caboodle links . 19
caboodles . 1, 19
certificate authentication. 37
check . 21
commands . 19
compile . 22
compilers . 29
component naming standard 10
concept . 1
connect . 22

D
disable . 23

E
edit . 23
enable . 23
export . 20

F
folders . 33

G
GNU Source File . 13

H
HTML document format . 43

I
import . 20
installation . 13

K
kits . 6, 20

L
line editor format . 42
link . 19
list . 23

M
migration . 9, 20
model plans . 33

P
plan formats . 41
plan management . 22
plan relationships . 35
planner . 37
plans . 7, 33

R
remove . 23
rename . 24
replication . 8
RPM File . 13

S
servants . 31
setup . 15, 24
show . 24
start . 22
stop . 22
subdirectories . 2

U
unlink . 19
upgrade . 21
use . 20

V
view . 24

W
Webster . 39

X
XML document format . 4146 Caboodle NodeBrain Kit

	Concepts
	Caboodles
	Subdirectories
	Kits
	Plans
	Component Replication
	Component Migration
	Component Naming Standard

	Installation
	GNU Source File
	RPM File

	Setup
	Create Account
	Create Directory
	Create Link
	Initialize Caboodle
	Create Caboodle Agent Identity
	Start Caboodle Agent
	Edit CaboodleMailAdmin Plan
	Issue Test Alarm
	Setup Example

	Commands
	Caboodle Links
	link
	unlink
	--caboodles

	Caboodle Development
	--kits
	use

	Component Migration
	export
	import
	upgrade

	Agent Management
	archive
	bounce
	check
	connect
	start
	stop

	Plan Management
	compile
	disable
	edit
	enable
	list
	remove
	rename
	setup
	show
	view

	Alarm Distribution
	Alarm

	Agents
	Caboodle Agent

	Adapters
	Plan Compilers
	Alarm Adapters

	Servants
	Plans
	Folders
	Model Plans
	Application Plans
	Plan Relationships

	Planner
	Certificate Authentication
	Authorization
	Apache
	Webster

	Plan Formats
	XML Document Format
	Line Editor Format
	HTML Document Format

	Index

