
System NodeBrain Kit

Release 0.8.17

System NodeBrain Kit
July 2014
NodeBrain Open Source Project

Release 0.8.17

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2007-11-05 Title: System NodeBrain Kit
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Source Project

Version 0.6.8 (not released)
• This document, like the software it describes, is a prototype.

2013-02-05 Release 0.8.13
• Converted to Texinfo
• Several updates in preparation for release

2013-05-06 Release 0.8.14
• Updates to Agents, Adapters and Servants chapters.

Preface

This document describes the System NodeBrain Kit. It is intended for users and developers
of NodeBrain application kits. The reader should be familiar with basic NodeBrain concepts
as covered in the NodeBrain Tutorial.
The System NodeBrain Kit derived from a tool developed in 1998 called the Unix System
Monitor Kit, or Sysmon. The framework components of the original tool have evolved
into the Caboodle NodeBrain Kit, while the application components have evolved into the
System NodeBrain Kit. The original Unix System Monitor Kit (Sysmon) supported options
for monitoring without a NodeBrain rule engine, substituting cron or a system management
agent like HP Operations Manager to schedule the execution of probes. These options have
been removed from the System NodeBrain Kit, requiring a NodeBrain rule engine, although
integration with commercial system management agents is still possible and often desirable.
See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Tutorial
NodeBrain Language Reference

Document Conventions

Sample code and input/output examples are displayed in a monospace font and enclosed in
a box. Bold text is used to bring the reader’s attention to specific portions of an example. In
the following example, the first and last line are associated with the host shell and the lines
in between are input or output unique to NodeBrain. The define command is highlighted,
indicating it is the focus of the example. Lines ending with a backslash \ indicate when a
command is continued on the next displayed line. This is supported by the language within
source files, but not for other methods of command input. If you copy an example of a
command displayed over multiple lines, you must enter it as a single line when used outside
the context of a source file.� �
$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";
> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\

e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NB000I Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$
 	

Table of Contents

1 Concepts . 1
1.1 System Agent . 1
1.2 Server Monitoring . 1
1.3 Application Monitoring . 1

2 Installation . 3
2.1 GNU Source File . 3
2.2 RPM File . 3

3 Setup . 5
3.1 Adding System Kit to a Caboodle . 5
3.2 Enable System Folder . 5
3.3 Create System Agent Identity . 5
3.4 Start System Agent . 5
3.5 Plan Setup . 6
3.6 Enabling Plans . 6
3.7 System Services . 6

4 Commands . 9

5 Agents . 11

6 Adapters . 13
6.1 Plan Compilers . 13
6.2 Alarm Adapters . 13

7 Servants . 15

8 Plans . 17
8.1 Folders . 17
8.2 Model Plans . 17
8.3 Application Plans . 17

Index . 19

System NodeBrain Kit i

Chapter 1: Concepts July 2014

1 Concepts

This chapter introduces basic concepts of the System NodeBrain Kit. The reader should
be familiar with the concepts introduced by the Caboodle NodeBrain Kit, upon which the
System Kit depends.

1.1 System Agent

The System NodeBrain Kit provides a NodeBrain agent called the System agent, that
monitors various elements of a server or application and issues alarms to the Caboodle
agent provided by the Caboodle NodeBrain Kit. A server may run any number of System
agents, each dedicated to monitoring the server, a shared application, or an application
managed by a single user.
A small minimal set of monitoring plans is provided by the System Kit. Users are encouraged
to develop additional kits that build on the System Kit and make them available to others.
If you develop general monitors that seem like logical additions to the System NodeBrain
Kit, let us know and your recommendation will be considered.

1.2 Server Monitoring

This kit can be used to monitor a server while running as root or as a dedicated user.
A startup/shutdown script called "sysmon" is provided for this use case on Linux servers.
The NodeBrain Open Source Project does not provide platform specific kits for monitoring
servers, instead only a skeletal kit is provided. Users of the System Kit are encouraged to
develop additional kits built on top of the System Kit, and to share those kits with others.
For example, a robust set of log monitoring plans for a given platform would make a very
useful kit.
For security reasons, when running NodeBrain as root or any account with special systemr-
wide permissions, you should avoid using node modules that enable remote control.

1.3 Application Monitoring

Applications often have unique monitoring requirements that are not satisifed by server
level monitoring. The System Kit may be used to implement application sepecific moni-
toring. When developing monitoring plans for generic applications used by many, consider
reusability so others can benefit from your work.

System NodeBrain Kit 1

Chapter 2: Installation July 2014

2 Installation

The System Kit is released as a GNU style source distribution file, and an architecture
independent RPM file, both of which can be downloaded at http://nodebrain.org, with
SourceForge.net providing the download service.

2.1 GNU Source File

When installing from a GNU source distribution release file, follow these steps, adjusting
the release number as needed to match the file you download.� �
tar -xf nbkit-system-0.8.14.tar.gz
cd nbkit-system-0.8.14
./configure
make
make check
make install
 	
When using this method, the kit is installed to ‘/usr/local/share/nbkit/system-0.8.14.tar.gz’.
You can override this using ./configure --prefix=/home/foo, which would cause the kit
to be installed as ‘/home/foo/share/nbkit/system-0.8.14.tar.gz’.
If on a Linux platform that supports RPM files, you may issue the following command to
create a source RPM file and a noarch RPM file to enable native package management.� �
make rpm
 	
2.2 RPM File

When installing from an RPM file, use the following rpm command. The RPM is not
architecture dependent because it contains no compiled code, only Perl and NodeBrain
scripts, and a few web pages and associated image files.� �
rpm --install nbkit-system-0.8.14-1.noarch.rpm
 	
When using this method, the kit is installed to ‘/usr/share/nbkit/system-0.8.14.tar.gz’.

System NodeBrain Kit 3

Chapter 3: Setup July 2014

3 Setup

This chapter walks the reader through the initial setup process as performed on a devel-
opment system. The nbkit commands used in this chapter are explained in the Caboodle
NodeBrain Kit manual and nbkit man page.

3.1 Adding System Kit to a Caboodle

To use the System Kit, you must already have a caboodle that uses the Caboodle NodeBrain
Kit. To add the System Kit to your caboodle, issue the use command of nbkit as shown
below. The nbkit -k command will display the kits installed on the development server.
Specify the kit you want to use for the caboodle. The last line of the this example would
be used for System Kit release 0.8.14 installed using an RPM file. However, the kit could
just as easily come from a location within your home directory.� �
$ nbkit -k
$ nbkit caboodle use kit-directory

$ nbkit caboodle use /usr/share/nbkit/system-0.8.14.tar.gz
 	
3.2 Enable System Folder

Plans provided by the System Kit are placed in the SystemFolder. To provide visibility of
the SystemFolder when using the web interface, include it in the Admin folder as follows.� �
$ nbkit caboodle enable SystemFolder._Admin.parent
 	
3.3 Create System Agent Identity

The System agent runs with a NodeBrain identity, which must be established before starting
the agent. Issue these commands.� �
$ nb
> peer.identify System
> quit
$ echo "declare System identity;" >> ~/.nb/user.nb
 	
3.4 Start System Agent

Use the following command to start the System agent. This agent is responsible for moni-
toring the application provided by the caboodle.� �
$ nbkit caboodle start System
 	
System NodeBrain Kit 5

July 2014 Chapter 3: Setup

3.5 Plan Setup

To display plans provided by the System Kit, available for setup, issue the following nbkit
command.� �
$ nbkit caboodle setup
 	
Plans starting with "System" that are not already setup, may be setup as follows, where
SystemProcess is an example.� �
$ nbkit caboodle setup plan

$ nbkit caboodle setup SystemProcess
 	
3.6 Enabling Plans

System plans are designed as rules to be processed by the System agent. However, the
System agent will only process them when they are enabled as children of the System
agent.� �
$ nbkit caboodle enable plan.System.parent
$ nbkit caboodle enable SystemProcess.System.parent
 	
To see the current relationships for a plan, use the show command.� �
$ nbkit caboodle show plan

$ nbkit caboodle show System
$ nbkit caboodle show SystemProcess
 	
3.7 System Services

If your caboodle is intended as a system service, you can use a couple files provided by the
System Kit in the setup directory to help on a Linux server. Here the steps are descibed as if
you are performing the setup on a development server with a caboodle that uses the System
Kit. Later you will automate these steps as part of your application package, perhaps an
RPM file.

Let’s say you are calling your service "foobar", and the caboodle is ‘/var/foobar’. Edit
‘/var/foobar/setup/nodebrain.sysconfig’ and change CABOODLE to ‘/var/foobar’ as
illustrated below.� �
Distributed as setup/nodebrain.sysconfig
CABOODLE=/var/foobar
AGENT=System
 	
6 System NodeBrain Kit

Chapter 3: Setup July 2014

The value for AGENT will remain System if you are using the System agent within your
caboodle to provide the foobar service. If the foobar service is provided by a different agent
within our caboodle, then modify AGENT as well.
Perform the following commands to complete the setup.� �
cp /var/foobar/setup/nodebrain.service /etc/init.d/foobar
cp /var/foobar/setup/nodebrain.sysconfig /etc/sysconfig/foobar
chkconfig add foobar
service start foobar
 	
Before converting a NodeBrain agent into a system service, issue a stop command using
nbkit, even if the agent is not running. This establishes an intent for the service to be
down with respect to the nbkit command.� �
$ nbkit foobar stop System
 	
After converting a NodeBrain agent into a system service, you should perform all start,
stop, and restart operations using the service command as root, and avoid using the
start, stop, check and bounce options of the nbkit command on the agent.� �
service foobar start
service foobar stop
 	
The problem with using options of nbkit to start or stop the agent is distruption of the
service command’s use of a pid file to identify a running service. (This is an opportunity
for a future release of nbkit to include awareness of agents running as services, and to use
the service command when appropriate.)
You can still use other nbkit commands like edit and compile on the agent. When the
agent is compiled, either directly or as a result of a recursive compile started by a child plan
change, restart the service.� �
nbkit foobar compile System
service foobar restart
 	

System NodeBrain Kit 7

Chapter 4: Commands July 2014

4 Commands

The System Kit does not provide any commands. The commands provided by the Caboodle
Kit are sufficient.

System NodeBrain Kit 9

Chapter 5: Agents July 2014

5 Agents

The System Kit provides only one agent called "System". This agent, in addition to the
Caboodle agent provided by the Caboodle Kit, is often sufficient to monitor a server or
application. However, you are free to create additional agents like the System agent to
distribute monitoring tasks for any reason. Performance and availability are two reasons
one might want to isolate one set of monitoring rules from another by using multiple agents.

System NodeBrain Kit 11

Chapter 6: Adapters July 2014

6 Adapters

Adapers are small scripts that adapt NodeBrain to an application environment based on a
model of interaction not defined by NodeBrain, but taking advantage of more general types
of interaction defined by NodeBrain. In other words, adapters can fit into models defined
by NodeBrain Kits, about which NodeBrain has no awareness.

6.1 Plan Compilers

The System Kit provides the following plan compilers to implement additional rule genera-
tion schemes. These schemes are described a bit under Model Plans later in this document.
However, be best we to understand them is to study plans that use these schemes.� �
SystemAudit.compiler
SystemThreshold.compiler
SystemThresholds.compiler
 	
6.2 Alarm Adapters

The System Kit does not provide any alarm adapters.

System NodeBrain Kit 13

Chapter 7: Servants July 2014

7 Servants

Servants connect NodeBrain rules to an application environment using a method of interac-
tion prescribed by, and fully support by, NodeBrain. This sets them apart from adapters,
which interact with NodeBrain indirectly, based on a model unknown to NodeBrain.
The System Kit provides a small set of servants, intended primarily to demonstrate a
concept you can extend, but also to provide an application you can use without too much
effort.� �
SystemCpu.probes
SystemFilesys.probe
SystemProcess.probe
SystemThreshold.node
 	
These servants are used by related plans described in the next chapter, and it isn’t neces-
sary to understand these servants before using the plans. However, if you intend to create
additional servants for use with the System Kit, it may be helpful to know that the System
Kit defines, by example, types of servants identified by a file extension of probes, probe,
and node. By modeling a servant after a probes servant, it can be used with the Sys-
temThresholds compiler, or a compatible compiler. By modeling a servant after a probe
servant, it can be used with the SystemThreshold compiler, or a compatible compiler. The
SystemThreshold.node servant is a helper to both the SystemThreshold and SystemThresh-
olds compiler.
When creating compilers and servants of your own, after first just getting something to
work, consider how your might conform to an existing model or API for reusability, or
how you might define a new one that others can follow. The idea is to build up a set of
reusable compilers and model plans, so others can focus on the creation of plans built from
the model, and servants that plug into those models.

System NodeBrain Kit 15

Chapter 8: Plans July 2014

8 Plans

Plans are XML documents that represent a set of NodeBrain rules, or configuration file,
as a table with options. This kit provides just a few to get you started with monitoring a
server or application.

8.1 Folders

Folder are provided to aid in navigation when managing plans using the NodeBrain Planner.

Plan Purpose
SystemFolder Enables navigation to all application plans provided by this kit. Par-

ent is Admin.

8.2 Model Plans

Plans in this section are used as a model for creating new plans. They are children of the
Model folder.

Plan Purpose
SystemAudit Audit a log file, watching for patterns matching regular expressions.
SystemThreshold Create a new theshold plan to monitor values returned from one or

more types of "probe" servant.
SystemThresholds Create a new theshold plan to monitor multiple values returned by

a single "probes" servant.

8.3 Application Plans

Plans in this section provide a minimal application that can be used to monitor the health
of a server or application.

Plan Purpose
System Agent responsible for monitoring a server or application. If moni-

toring a NodeBrain application, additional agents are often used to
implement the application.

SystemCpu SystemThresholds plan that uses the SystemCpu.probes servant to
monitor CPU utilization.

SystemFilesys SystemThreshold plan that uses the SystemFilesys.probe servant to
monitor file system space.

SystemProcess SystemThreshold plan that used the SystemProcess.probe servant
to monitor process to ensure required processes are running, and
forbidden processes are not.

System NodeBrain Kit 17

Index July 2014

Index

A
adapters . 13
agents . 11
alarm adapters . 13
application monitoring . 1
application plans . 17

C
commands . 9
compilers . 13
concepts . 1

E
enabling plans . 6

F
folders . 17

G
GNU Source File . 3

I
installation . 3

M
model plans . 17

P
plan setup . 6
Plans . 17

R
RPM File . 3

S
servants . 15
server monitoring . 1
setup . 5
system agent . 1
system services . 6

System NodeBrain Kit 19

	Concepts
	System Agent
	Server Monitoring
	Application Monitoring

	Installation
	GNU Source File
	RPM File

	Setup
	Adding System Kit to a Caboodle
	Enable System Folder
	Create System Agent Identity
	Start System Agent
	Plan Setup
	Enabling Plans
	System Services

	Commands
	Agents
	Adapters
	Plan Compilers
	Alarm Adapters

	Servants
	Plans
	Folders
	Model Plans
	Application Plans

	Index

